We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We present a complete list of groups $G$ and fields $F$ for which: (i) the group of normalized units $V(FG)$ of the group algebra $FG$ is locally nilpotent; (ii) the set of nontrivial nilpotent elements of $FG$ is finite and nonempty, and $V(FG)$ is an Engel group.
If $k$ is a positive integer, a group $G$ is said to have the $FE_{k}$-property if for each element $g$ of $G$ there exists a normal subgroup of finite index $X(g)$ such that the subgroup $\langle g,x\rangle$ is nilpotent of class at most $k$ for all $x\in X(g)$. Thus, $FE_{1}$-groups are precisely those groups with finite conjugacy classes ($FC$-groups) and the aim of this paper is to extend properties of $FC$-groups to the case of groups with the $FE_{k}$-property for $k>1$. The class of $FE_{k}$-groups contains the relevant subclass $FE_{k}^{\ast }$, consisting of all groups $G$ for which to every element $g$ there corresponds a normal subgroup of finite index $Y(g)$ such that $\langle g,U\rangle$ is nilpotent of class at most $k$, whenever $U$ is a nilpotent subgroup of class at most $k$ of $Y(g)$.
Let $F$ be a field of characteristic $p\geq 0$ and $G$ any group. In this article, the Engel property of the group of units of the group algebra $FG$ is investigated. We show that if $G$ is locally finite, then ${\mathcal{U}}(FG)$ is an Engel group if and only if $G$ is locally nilpotent and $G^{\prime }$ is a $p$-group. Suppose that the set of nilpotent elements of $FG$ is finite. It is also shown that if $G$ is torsion, then ${\mathcal{U}}(FG)$ is an Engel group if and only if $G^{\prime }$ is a finite $p$-group and $FG$ is Lie Engel, if and only if ${\mathcal{U}}(FG)$ is locally nilpotent. If $G$ is nontorsion but $FG$ is semiprime, we show that the Engel property of ${\mathcal{U}}(FG)$ implies that the set of torsion elements of $G$ forms an abelian normal subgroup of $G$.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.