We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Syncope is common among pediatric patients and is rarely pathologic. The mechanisms for symptoms during exercise are less well understood than the resting mechanisms. Additionally, inert gas rebreathing analysis, a non-invasive examination of haemodynamics including cardiac output, has not previously been studied in youth with neurocardiogenic syncope.
Methods:
This was a retrospective (2017–2023), single-center cohort study in pediatric patients ≤ 21 years with prior peri-exertional syncope evaluated with echocardiography and cardiopulmonary exercise testing with inert gas rebreathing analysis performed on the same day. Patients with and without symptoms during or immediately following exercise were noted.
Results:
Of the 101 patients (15.2 ± 2.3 years; 31% male), there were 22 patients with symptoms during exercise testing or recovery. Resting echocardiography stroke volume correlated with resting (r = 0.53, p < 0.0001) and peak stroke volume (r = 0.32, p = 0.009) by inert gas rebreathing and with peak oxygen pulse (r = 0.61, p < 0.0001). Patients with syncopal symptoms peri-exercise had lower left ventricular end-diastolic volume (Z-score –1.2 ± 1.3 vs. –0.36 ± 1.3, p = 0.01) and end-systolic volume (Z-score –1.0 ± 1.4 vs. −0.1 ± 1.1, p = 0.001) by echocardiography, lower percent predicted peak oxygen pulse during exercise (95.5 ± 14.0 vs. 104.6 ± 18.5%, p = 0.04), and slower post-exercise heart rate recovery (31.0 ± 12.7 vs. 37.8 ± 13.2 bpm, p = 0.03).
Discussion:
Among youth with a history of peri-exertional syncope, those who become syncopal with exercise testing have lower left ventricular volumes at rest, decreased peak oxygen pulse, and slower heart rate recovery after exercise than those who remain asymptomatic. Peak oxygen pulse and resting stroke volume on inert gas rebreathing are associated with stroke volume on echocardiogram.
Endomyocardial biopsy remains the gold standard for cardiac cellular rejection surveillance after heart transplantation. We studied a novel non-invasive index of left ventricular relaxation to detect cardiac cellular rejection in paediatric heart transplant patients.
Methods:
This is a single-centre retrospective study of paediatric heart transplant patients who underwent endomyocardial biopsy from June 2014 to September 2021. Left ventricular relaxation index was calculated as the sum of diastolic tissue Doppler imaging velocities (E) of the left ventricular lateral, septal, and posterior walls divided by the percentage of the left ventricular posterior wall thinning by M-mode. Statistical analysis included t-tests and Mann-Whitney tests to compare means and medians between treatment and non-treatment groups. We used the cut-off with the maximum Youden index to compare the sensitivity and specificity of left ventricular relaxation index to detect rejection.
Results:
The study included 65 patients who underwent 246 cardiac catheterizations and endomyocardial biopsies. Out of 246, 192 procedures were included and 54 were excluded due to recent transplants or lack of echocardiographic data. A total of 114 demonstrated Grade 0R, 68 Grade 1R, 8 Grade 2R, and 2 Grade 3R allograft rejection. The difference in mean left ventricular relaxation index between treatment versus non-treatment groups (2R, 3R vs. 0R, 1R) was not statistically significant (p = 0.917). A left ventricular relaxation index cut-off of 0.73 had the highest Youden index with good sensitivity (100%) and poor specificity (23%) for detecting rejections with grades 2R and 3R.
Conclusion:
Left ventricular relaxation index, a novel index of left ventricular relaxation, was not a sensitive or specific predictor of cardiac cellular rejection in paediatric heart transplants.
Haemodynamic instability is common after surgical repair of CHDs in infants and children. Monitoring cardiac output in addition to traditional circulation parameters could improve the postoperative care of these patients. Echocardiography and transpulmonary thermodilution are the two most common methods for measuring cardiac output in infants.
Objectives:
To compare the results of cardiac output measurements using echocardiography and a transpulmonary thermodilution setup after paediatric cardiac surgery.
Methods:
Forty children, scheduled for elective repair of a ventricular septal defect or of an atrio-ventricular septal defect using cardiopulmonary bypass, were enrolled in this prospective, observational study. Cardiac output was simultaneously measured using echocardiography and a commercially available transpulmonary thermodilution method (PiCCO™) at 18 h after the end of surgery.
Results:
At 18 h after surgery, PiCCO™ gave a mean of 3.0% higher cardiac output than echocardiography. This difference was not statistically significant. 95% of the observations fell within –50.0 to 82.6%.
Conclusion:
The methods were found to have a good agreement on average, with no statistically significant difference between them. However, the spread of the results was large. It is questionable whether the methods can be used interchangeably in clinical practice.
Arterial oxygen saturation in single ventricle patients is dependent on systemic cardiac output. Here, we describe a case of a newborn with single ventricle physiology and an unusual mechanism to explain poor cardiac output and cyanosis. This case highlights the importance of identifying and considering ventricular morphology and ventricular-ventricular interactions to understand clinical challenges.
Success of atrioventricular septal defect repair is defined by post-operative atrioventricular valve function and presence of residual intracardiac shunting. We evaluated differences in interpretation of atrioventricular valve function and residual defects between transesophageal and transthoracic echocardiography in a contemporary cohort of infants undergoing atrioventricular septal defect repair. Among 106 patients, we identified an increase in left and right atrioventricular valve regurgitation, right atrioventricular valve inflow gradient, and increased detection rate of residual intracardiac shunting on transthoracic compared to transesophageal echocardiograms, although residual shunts identified only on transthoracic echocardiogram were not haemodynamically significant. Findings may help inform expectation of post-operative transthoracic echocardiogram findings based on intraoperative assessment.
NT-proBNP is a peptide related to brain natriuretic peptide, a cardiac biomarker and a member of the natriuretic family of peptides. NT-proBNP has demonstrated its clinical utility in the assessment of a wide spectrum of cardiac manifestations. It is also considered a more precise diagnostic and prognostic cardiac biomarker than brain natriuretic peptide. With the appearance of the Severe Acute Respiratory Syndrome Coronavirus 2 virus and the subsequent COVID-19 pandemic, diagnosis of heart implications began to pose an increasing struggle for the physician. Echocardiography is considered a central means of evaluating cardiac disorders like heart failure, and it is considered a reliable method. However, other diagnostic methods are currently being explored, one of which involves the assessment of NT-proBNP levels. In the literature that involves the adult population, significant positive correlations were drawn between the levels of NT-proBNP and COVID-19 outcomes such as high severity and fatality. In the paediatric population, however, the literature is scarce, and most of the investigations assess NT-proBNP in the context of Multiple Inflammatory Syndrome in Children, where studies have shown that cohorts with this syndrome had elevated levels of NT-proBNP when compared to non-syndromic cohorts. Thus, more large-scale studies on existing COVID-19 data should be carried out in the paediatric population to further understand the prognostic and diagnostic roles of NT-proBNP.
There is limited data on the organisation of paediatric echocardiography laboratories in Europe.
Methods:
A structured and approved questionnaire was circulated across all 95 Association for European Paediatric and Congenital Cardiology affiliated centres. The aims were to evaluate: (1) facilities in paediatric echocardiography laboratories across Europe, (2) accredited laboratories, (3) medical/paramedical staff employed, (4) time for echocardiographic studies and reporting, and (5) training, teaching, quality improvement, and research programs.
Results:
Respondents from forty-three centres (45%) in 22 countries completed the survey. Thirty-six centres (84%) have a dedicated paediatric echocardiography laboratory, only five (12%) of which reported they were European Association of Cardiovascular Imaging accredited. The median number of echocardiography rooms was three (range 1–12), and echocardiography machines was four (range 1–12). Only half of all the centres have dedicated imaging physiologists and/or nursing staff, while the majority (79%) have specialist imaging cardiologist(s). The median (range) duration of time for a new examination was 45 (20–60) minutes, and for repeat examination was 20 (5–30) minutes. More than half of respondents (58%) have dedicated time for reporting. An organised training program was present in most centres (78%), 44% undertake quality assurance, and 79% perform research. Guidelines for performing echocardiography were available in 32 centres (74%).
Conclusion:
Facilities, staffing levels, study times, standards in teaching/training, and quality assurance vary widely across paediatric echocardiography laboratories in Europe. Greater support and investment to facilitate improvements in staffing levels, equipment, and governance would potentially improve European paediatric echocardiography laboratories.
We report an uncommon case report of total anomalous pulmonary venous returns into the right atrium at the base of the superior caval vein’s ostium without a sinus venosus defect, in situs solitus, without vertical vein or a posterior pulmonary venous confluence.
Ultrasonography is a safe, relatively inexpensive, and portable imaging modality. With the increasing availability of mobile, portable, and pocket-sized ultrasound machines, point-of-care transthoracic echocardiography has become a bedside tool to serve in medical emergencies and in peri-operative settings to assess the hemodynamically unstable obstetric patient in a timely fashion. In managing obstetric critical illness, some characteristics of pregnant women facilitate a focused cardiac examination, including anterior and left lateral displacement of the heart, spontaneous ventilation, and familiarity with ultrasound use. It supplements the physical examination, basic investigations, and aids in the diagnosis of significant cardiac pathology. While many acronyms exist, such as bedside echocardiography, point-of-care echocardiography, hand-held echocardiography, or goal-directed echocardiography, national and international scientific bodies have agreed on the terminology “focused cardiac ultrasound” or FoCUS. This chapter provides an overview of the definition, techniques, and diagnostic aims of a FoCUS examination and its clinical applications in obstetric cardiac disease. The chapter concludes by summarizing certification standards and training requirements.
Echocardiography is a key diagnostic tool for medical decision-making following congenital heart surgery. Overall utilisation of echocardiography for specific congenital heart lesions following cardiac surgery has not previously been reported. This study aims to assess echocardiogram utilisation following the surgical repair of CHD to describe the variation in use across centres and provide clinical benchmarks.
Methods:
All patients < 18 years of age undergoing surgical repair of CHD were identified from the Pediatric Health Information System from 2010 to 2019. Surgeries were grouped based on their Risk Adjustment for Congenital Heart Surgery-1 scores. Detailed billing data were used to assess the frequency/cost of post-operative echocardiograms, phase of hospital care, and hospital length of stay.
Results:
In total, 37,238 surgical encounters were identified for inclusion across 48 centres. Higher Risk Adjustment for Congenital Heart Surgery scores were associated with an increased median number of post-operative echocardiograms (2 versus 4 in Risk Adjustment for Congenital Heart Surgery score 1 versus 6, p < 0.001), and longer median post-operative length of stay (3 days versus 31 days in Risk Adjustment for Congenital Heart Surgery score 1 versus 6, p < 0.001). After accounting for surgical complexity, there was significant variability in echocardiogram utilisation across centres (median daily echocardiogram utilisation range 0.2/day–0.6/day, p < 0.001). There is no difference in the proportion of patients with high surgical complexity (Risk Adjustment for Congenital Heart Surgery ≥ 4) between centres with high versus low echocardiogram utilisation (p = 0.44).
Conclusions:
Increasing surgical complexity is associated with longer post-operative length of stay and increased utilisation of echocardiography. There is wide variability in echocardiography resource utilisation across centres, even when accounting for surgical complexity.
This study aimed to analyse the influence of improved antenatal detection on the course, contemporary outcomes, and mortality risk factors of the complete atrioventricular block during fetal-neonatal and childhood periods in South Wales.
Methods:
The clinical characteristics and outcomes of complete atrioventricular block in patients without structural heart disease at the University Hospital of Wales from January 1966 to April 2021 were studied. Patients were divided into two groups according to their age at diagnosis: I-fetal-neonatal and II-childhood. Contemporary outcomes during the post-2001 era were compared with historical data preceding fetal service development and hence earlier detection.
Results:
There were 64 patients: 26 were identified in the fetal-neonatal period and the remaining 38 in the childhood period. Maternal antibodies/systemic lupus erythematosus disease (anti-Ro/Sjögren’s-syndrome-related Antigen A and/or anti-La/Sjögren’s-syndrome-related Antigen B) were present in 15 (57.7%) of the fetal-neonatal. Fetal/neonatal and early diagnosis increased after 2001 with an incidence of 1:25000 pregnancies. Pacemaker implantation was required in 34 patients, of whom 13 were diagnosed in the fetal-neonatal group. Survival rates in cases identified before 2001 were at 96.3% (26/27), whereas it was 83.8% (31/37) in patients diagnosed after 2001 (P > 0.05). Other mortality risk factors comprised a lower gestational week at birth, maternal antibodies, and an average ventricular heart rate of < 55 bpm.
Conclusions:
Fetal diagnosis of complete atrioventricular block is still portends high fetal and neonatal mortality and morbidity despite significantly improved antenatal detection after 2001. Pacemaker intervention is needed earlier in the fetal-neonatal group. Whether routine antenatal medical treatment might alter this outcome calls for further prospective multicentre studies.
Infection with Sars-CoV-2 is known to cause cardiac injury and coronary artery changes in moderate to severe acute COVID-19 and post-acute multisystem inflammatory syndrome in children (MIS-C). However, little is known about the potential for cardiac involvement, in particular coronary artery dilation, in asymptomatic or mild cases of COVID-19.
Methods:
A retrospective review of children ≤ 18 years of age with a history of asymptomatic or mild COVID-19 disease who underwent echocardiography after Sars-CoV-2 infection is conducted. Patients were excluded if they had been hospitalised for COVID-19/MIS-C or had a history of cardiac disease that could affect coronary artery dimension. Coronary artery dilation was defined as the Boston Z-score greater than 2.0.
Results:
One hundred and fifty-seven patients met inclusion criteria with a mean age of 9.4 years (+/– 5.4 years). Eighty-four (54%) patients were identified as having COVID-19 through positive antibody testing. All patients underwent electrocardiogram and echocardiogram as part of their cardiology evaluation. One hundred and thirty-five (86%) patients had a normal evaluation or only a minor variant on electrocardiogram, while 22 patients had abnormalities on echocardiogram, 4 of which demonstrated coronary artery dilation based on the Boston Z-score.
Conclusions:
Much of the literature for post-infectious screening and follow-up focuses on patients with a history of moderate to severe COVID-19 disease, emphasising the need for surveillance for the potential development of myocarditis. In this study, 4 out of 157 (2.5%) children with a history of asymptomatic or mild COVID-19 disease without MIS-C were found to have some degree of coronary artery dilation. The significance of this finding currently remains unknown.
Systemic lupus erythematosus in children generally manifests more severely with a more aggressive disease course. Cardiac involvement in systemic lupus erythematosus often does not show specific signs and symptoms, but speckle-tracking echocardiography can detect cardiac dysfunction. This study aimed to determine the differences in left ventricular function as measured by speckle-tracking echocardiography in children with various severity of systemic lupus erythematosus activity.
Methods:
A cross-sectional study of 49 children diagnosed with systemic lupus erythematosus are currently undergoing outpatient or inpatient care at Dr Hasan Sadikin General Hospital, Bandung, from May 2023 to June 2023. Disease activity was assessed by Mexican Version of the Systemic Lupus Erythematosus Disease Activity Index (MEX-SLEDAI) with a score of 2–5 classified as mild activity, 6–9 as moderate, and ≥10 as severe. Each subject underwent conventional echocardiography and speckle-tracking echocardiography with a Philips EPIQ machine performed by a Pediatric Cardiologist Consultant 10 days after inclusion.
Results:
Fifteen (30.6%) subjects had mild disease activity, and 34 (69.4%) subjects had moderate disease activity. Most subjects (81.96%) were female with an average age of 15 years. The mean ejection fraction and fractional shortening as well as the median E/A ratio in the mild and moderate disease activity groups were not significantly different (65.76 versus 67.38%, 35.73 versus 37.11%, 1.6 versus 1.5%, respectively, p > 0.005). The global longitudinal strain in the moderate activity group was reduced more significantly than in the mild activity group (−16.58 versus −19.65, p = 0.008).
Conclusion:
Left ventricular function as measured by speckle-tracking echocardiography was lower in children with moderate systemic lupus erythematosus activity than those with mild disease activity.
Many factors affect patient outcome after congenital heart surgery, including the complexity of the heart disease, pre-operative status, patient specific factors (prematurity, nutritional status and/or presence of comorbid conditions or genetic syndromes), and post-operative residual lesions. The Residual Lesion Score is a novel tool for assessing whether specific residual cardiac lesions after surgery have a measurable impact on outcome. The goal is to understand which residual lesions can be tolerated and which should be addressed prior to leaving the operating room. The Residual Lesion Score study is a large multicentre prospective study designed to evaluate the association of Residual Lesion Score to outcomes in infants undergoing surgery for CHD. This Pediatric Heart Network and National Heart, Lung, and Blood Institute-funded study prospectively enrolled 1,149 infants undergoing 5 different congenital cardiac surgical repairs at 17 surgical centres. Given the contribution of echocardiographic measurements in assigning the Residual Lesion Score, the Residual Lesion Score study made use of a centralised core lab in addition to site review of all data. The data collection plan was designed with the added goal of collecting image quality information in a way that would permit us to improve our understanding of the reproducibility, variability, and feasibility of the echocardiographic measurements being made. There were significant challenges along the way, including the coordination, de-identification, storage, and interpretation of very large quantities of imaging data. This necessitated the development of new infrastructure and technology, as well as use of novel statistical methods. The study was successfully completed, but the size and complexity of the population being studied and the data being extracted required more technologic and human resources than expected which impacted the length and cost of conducting the study. This paper outlines the process of designing and executing this complex protocol, some of the barriers to implementation and lessons to be considered in the design of future studies.
Although COVID-19 is known to have cardiac effects in children, seen primarily in severe disease, more information is needed about the cardiac effects following COVID-19 in non-hospitalised children and adolescents during recovery. This study aims to compare echocardiographic markers of cardiac size and function of children following acute COVID-19 with those of healthy controls.
Methods:
This single-centre retrospective case–control study compared 71 cases seen in cardiology clinic following acute COVID-19 with 33 healthy controls. Apical left ventricle, apical right ventricle, and parasternal short axis at the level of the papillary muscles were analysed to measure ventricular size and systolic function. Strain was analysed on vendor-independent software. Statistical analysis was performed using t-test, chi-square, Wilcoxon rank sum, and regression modelling as appropriate (p < 0.05 significant).
Results:
Compared to controls, COVID-19 cases had slightly higher left ventricular volumes and lower left ventricular ejection fraction and right ventricular fractional area change that remained within normal range. There were no differences in right or left ventricular longitudinal strain between the two groups. Neither initial severity nor persistence of symptoms after diagnosis predicted these differences.
Conclusions:
Echocardiographic findings in children and adolescents 6 weeks to 3 months following acute COVID-19 not requiring hospitalisation were overall reassuring. Compared to healthy controls, the COVID-19 group demonstrated mildly larger left ventricular size and lower conventional measures of biventricular systolic function that remained within the normal range, with no differences in biventricular longitudinal strain. Future studies focusing on longitudinal echocardiographic assessment of patients following acute COVID-19 are needed to better understand these subtle differences in ventricular size and function.
Patients with unbalanced common atrioventricular canal can be difficult to manage. Surgical planning often depends on pre-operative echocardiographic measurements. We aimed to determine the added utility of cardiac MRI in predicting successful biventricular repair in common atrioventricular canal.
Methods:
We conducted a retrospective cohort study of children with common atrioventricular canal who underwent MRI prior to repair. Associations between MRI and echocardiographic measures and surgical outcome were tested using logistic regression, and models were compared using area under the receiver operator characteristic curve.
Results:
We included 28 patients (median age at MRI: 5.2 months). The optimal MRI model included the novel end-diastolic volume index (using the ratio of left ventricular end-diastolic volume to total end-diastolic volume) and the left ventricle–right ventricle angle in diastole (area under the curve 0.83, p = 0.041). End-diastolic volume index ≤ 0.18 and left ventricle–right ventricle angle in diastole ≤ 72° yield a sensitivity of 83% and specificity of 81% for successful biventricular repair. The optimal multimodality model included the end-diastolic volume index and the echocardiographic atrioventricular valve index with an area under the curve of 0.87 (p = 0.026).
Conclusions:
Cardiac MRI can successfully predict successful biventricular repair in patients with unbalanced common atrioventricular canal utilising the end-diastolic volume index alone or in combination with the MRI left ventricle–right ventricle angle in diastole or the echocardiographic atrioventricular valve index. A prospective cardiac MRI study is warranted to better define the multimodality characteristic predictive of successful biventricular surgery.
Kaposiform hemangioendothelioma is a rare tumour of vascular origin that rarely occurs in the heart. We provided a rare case of a 26-day-old infant with tachypnoea. Echocardiography showed a solid tumour in the pericardial cavity and a large amount of pericardial effusion. The solid tumour was confirmed by surgery, and the pathology was kaposiform hemangioendothelioma. We analysed this case and reviewed the related literature to explore the clinical features and echocardiographic manifestations to improve the understanding, diagnosis, and treatment of this disease for clinicians and sonographers.
Transcatheter pulmonary valve replacement serves as a successful alternative to surgical replacement of a right ventricle to pulmonary artery conduit. Guidelines for recommending transcatheter pulmonary valve replacement depend on MRI right ventricular volumes, which have been correlated to the echocardiographic measure of right ventricular annular tilt. We aim to assess whether right ventricular annular tilt can be a clinically useful alternative tool in the acute and long-term periods after transcatheter pulmonary valve replacement to assess right ventricular health.
Methods:
We reviewed 70 patients who underwent transcatheter pulmonary valve replacement at a single institution. Echocardiographic measurements were obtained prior to transcatheter pulmonary valve replacement, immediately after transcatheter pulmonary valve replacement, and within 6 months to 1 year after transcatheter pulmonary valve replacement. Right ventricular annular tilt measures the angle of the tricuspid valve plane relative to the mitral valve plane at end-diastole in the apical four-chamber view. Right ventricular fractional area change, right ventricular systolic strain, tissue Doppler velocity, and tricuspid annular plane systolic excursion Z-scores were obtained using published methods.
Results:
Right ventricular annular tilt decreased significantly immediately after transcatheter pulmonary valve replacement (p = 0.0004), and this reduction in right ventricular volume persisted at the mid-term follow-up (p < 0.0001). Fractional area change did not change significantly after transcatheter pulmonary valve replacement while right ventricular global strain improved at mid-term follow-up despite no significant difference immediately after transcatheter pulmonary valve replacement.
Conclusions:
Right ventricular annular tilt decreases both immediately after transcatheter pulmonary valve replacement and at mid-term follow-up. Right ventricular strain also improved after transcatheter pulmonary valve replacement, corresponding to the improved volume load. Right ventricular annular tilt can be considered as an additional echocardiographic factor to assess right ventricular volume and remodeling after transcatheter pulmonary valve replacement.
The diagnosis of Duchenne-linked cardiomyopathy may be challenging. Conventional echocardiographic measurements typically show deterioration beyond the second decade. Global longitudinal strain has been proposed as an earlier marker than left ventricular ejection fraction.
Material and methods:
A prospective, observational, cross-sectional, case-control study was carried out. Both Duchenne patients and control subjects underwent transthoracic echocardiogram in order to assess left ventricle function. Bayesian linear regression was the main tool for inference. Age effects were parameterised by means of a spline function because of its simplicity to characterise continuous variables and smooth contributions. The posterior distribution of the marginal age effects was used to assess the earliest age of deterioration of each marker.
Results:
Sixteen Duchenne patients and twenty-two healthy male subjects were enrolled. On overage, cardiac function measures were found for ejection fraction and longitudinal strain among different groups. Age effects on global longitudinal strain are more reliably found at ages of 6 and above, while ejection fraction starts to deteriorate at an older age. Progressive left ventricular dysfunction in Duchenne patients is one of the key issues and starts at an early age with subtle symptoms.
Conclusion:
This cross-sectional study provides supporting evidence that global longitudinal strain is an earlier marker of disease progression than ejection fraction in Duchenne patients.
Pulmonary hypertension is frequent in infants with bronchopulmonary dysplasia. Echocardiography is easy to perform, non-invasive, and recommended by guidelines even though solely it is not enough. Catheterisation is gold standard but invasive, expensive, and not cost effective. Therefore, we aimed to assess to find out the role of biomarkers besides echocardiography in the diagnosis of pulmonary hypertension in preterm with bronchopulmonary dysplasia.
Methods:
This study is done during the time period January 2016–2017. The diagnosis of pulmonary hypertension was assessed by echocardiography at 36 weeks later repeated at 3rd and 6th months. We also repeated biomarkers at 3rd and 6th months. The infants born ≤ 28 weeks in Erciyes University hospital who were diagnosed bronchopulmonary dysplasia were included. Infants with genetic syndromes, structural lung, and CHDs were excluded. Patients without bronchopulmonary dysplasia but having pulmonary hypertension due to other reasons and patients having echocardiograms without adequate images were excluded.
Results:
At initial, 21/59 patients had bronchopulmonary dysplasia-pulmonary hypertension (Group 1), 21/59 had no bronchopulmonary dysplasia-pulmonary hypertension (Group 2), and 17/59 had bronchopulmonary dysplasia without pulmonary hypertension (Group 3). Systolic pulmonary artery pressure and pulmonary vascular resistance were found high in Group 1 (36 mmHg; p <0.001, 1.25 Woods Unit; p < 0.0017, respectively). Tricuspid annular plane systolic excursion values of Group 1 were low. Median serum kallistatin levels of Group 1 were lower than the other groups (230.5 (114.5–300.5) µg/ml; p < 0.005). During the study period, pulmonary hypertension of 14/21 bronchopulmonary dysplasia-pulmonary hypertension resolved, six patients in Group 3 developed pulmonary hypertension. However, there was no difference in the biomarkers of these six patients.
Conclusion:
In the diagnosis and the follow-up of pulmonary hypertension in bronchopulmonary dysplasia patients, besides echocardiography kallistatin, gelsolin, NT-probrain natriuretic peptide, homocysteine, and cystatin-C levels can be used. Further studies were required with large sample sizes.