We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The purpose of this study was to determine whether brain oxyhaemoglobin–deoxyhaemoglobin coupling was altered by anaesthesia or intubation-induced stress.
Methods
This was a prospective observational study in the operating room. Thirteen patients (ASA I and II) undergoing spinal or peripheral nerve procedures were recruited. They were stabilized before surgery with mask ventilation of 100% oxygen. Anaesthesia was induced with 2 μg kg−1 fentanyl and 3 mg kg−1 thiopental. Laryngoscopy and intubation were performed 4 min later. After intubation, desflurane anaesthesia (FiO2=1.0) was adjusted to maintain response entropy of the electroencephalogram at 40–45 for 20 min. Prefrontal cortex oxyhaemoglobin and deoxyhaemoglobin were determined every 2 s using frequency domain near-infrared spectroscopy. Blood pressure, heart rate and response entropy were collected every 10 s.
Results
Awake oxyhaemoglobin and deoxyhaemoglobin were 18.9 ± 2.3 μmol (mean ± SD) and 12.7 ± 0.8 μmol, respectively, and neither changed significantly during induction. Intubation increased oxyhaemoglobin by 37% (P < 0.05) and decreased deoxyhaemoglobin by 16% (P < 0.05), and both measures returned to baseline within 20 min of desflurane anaesthesia. Blood pressure, heart rate and electroencephalogram response entropy increased during intubation, and the increase in heart rate correlated with the increase in brain oxygen saturation (r = 0.48, P < 0.05).
Conclusions
Intubation-related stress increased oxyhaemoglobin related to electroencephalogram and autonomic activation. Stress-induced brain stimulation may be monitored during anaesthesia using frequency domain near-infrared spectroscopy.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.