We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
A practical method to determine the composition within ternary heterostructured semiconductor compounds using energy-dispersive X-ray spectroscopy in scanning transmission electron microscopy is presented. The method requires minimal external input factors such as user-determined or calculated sensitivity factors by incorporating a known compositional relationship, here a fixed stoichiometric ratio in III–V compound semiconductors. The method is demonstrated for three different systems; AlGaAs/GaAs, GaAsSb/GaAs, and InGaN/GaN with three different specimen geometries and compared to conventional quantification approaches. The method incorporates absorption effects influencing the composition analysis without the need to know the thickness of the specimen. Large variations in absorption conditions and assumptions regarding the reference area limit the accuracy of the developed method.
The invention of silicon drift detectors has resulted in an unprecedented improvement in detection efficiency for energy-dispersive X-ray (EDX) spectroscopy in the scanning transmission electron microscope. The result is numerous beautiful atomic-scale maps, which provide insights into the internal structure of a variety of materials. However, the task still remains to understand exactly where the X-ray signal comes from and how accurately it can be quantified. Unfortunately, when crystals are aligned with a low-order zone axis parallel to the incident beam direction, as is necessary for atomic-resolution imaging, the electron beam channels. When the beam becomes localized in this way, the relationship between the concentration of a particular element and its spectroscopic X-ray signal is generally nonlinear. Here, we discuss the combined effect of both spatial integration and sample tilt for ameliorating the effects of channeling and improving the accuracy of EDX quantification. Both simulations and experimental results will be presented for a perovskite-based oxide interface. We examine how the scattering and spreading of the electron beam can lead to erroneous interpretation of interface compositions, and what approaches can be made to improve our understanding of the underlying atomic structure.
In this paper, an improved quantification technique for STEM/EDX measurements of 1D dopant profiles based on the Cliff-Lorimer equation is presented. The technique uses an iterative absorption correction procedure based on density models correlating the local mass density and composition of the specimen. Moreover, a calibration and error estimation procedure based on linear regression and error propagation is proposed in order to estimate the total measurement error in the dopant density. The proposed approach is applied to the measurement of the As profile in a nanodevice test structure. For the calibration, two crystalline Si specimens implanted with different As doses have been used, and the calibration of the Cliff-Lorimer coefficients has been carried out using Rutherford Back Scattering measurements. The As profile measurement has been carried out on an FinFET test structure, showing that quantitative results can be obtained in the nanometer scale and for dopant atomic densities lower than 1%. Using the proposed approach, the measurement error and detection limit for our experimental setup are calculated and the possibility to improve this limit by increasing the observation time is discussed.
Correlative light and electron microscopy (CLEM) has been in use for several years, however it has remained a costly method with difficult sample preparation. Here, we report a series of technical improvements developed for precise and cost-effective correlative light and scanning electron microscopy (SEM) and focused ion beam (FIB)/SEM microscopy of single cells, as well as large tissue sections. Customized coordinate systems for both slides and coverslips were established for thin and ultra-thin embedding of a wide range of biological specimens. Immobilization of biological samples was examined with a variety of adhesives. For histological sections, a filter system for flat embedding was developed. We validated ultra-thin embedding on laser marked slides for efficient, high-resolution CLEM. Target cells can be re-located within minutes in SEM without protracted searching and correlative investigations were reduced to a minimum of preparation steps, while still reaching highest resolution. The FIB/SEM milling procedure is facilitated and significantly accelerated as: (i) milling a ramp becomes needless, (ii) significant re-deposition of milled material does not occur; and (iii) charging effects are markedly reduced. By optimizing all technical parameters FIB/SEM stacks with 2 nm iso-voxels were achieved over thousands of sections, in a wide range of biological samples.
Two mixites from Boss Tweed Mine, Tintic District, Juab County, Utah and Tin Stope, Majuba Hill, Pershing County, Nevada, USA, were analysed by scanning electron microscopy (SEM) with energy dispersive X-ray (EDX) analysis and by Raman spectroscopy. The SEM images show the mixite crystals to be elongated fibres up to 200 μm long and 2 μm wide. Detailed images of the mixite crystals show the mineral to be composed of bundles of fibres. The EDX analyses depend on the crystal studied, though the Majuba mixite gave analyses which matched the formula BiCu6(AsO4)3(OH)6.3H2O. Raman bands observed in the 880–910 cm−1 and 867–870 cm−1 regions are assigned to the AsO-stretching vibrations of (HAsO4)2− and (H2AsO4)− units, whilst bands at 803 and 833 cm−1 are assigned to the stretching vibrations of uncomplexed (AsO4)3- units. Intense bands observed at 473.7 and 475.4 cm−1 are assigned to the v4 bending mode of AsO4 units. Bands observed at 386.5, 395.3 and 423.1 cm−1 are assigned to the v2 bending modes of the HAsO4 (434 and 400 cm−1) and the AsO4 groups (324 cm−1). Raman spectroscopy lends itself to the identification of minerals on host matrices and is especially useful for the identification of mixites.
A method is proposed to determine the effective detector area for energy-dispersive X-ray spectrometers (EDS). Nowadays, detectors are available for a wide range of nominal areas ranging from 10 up to 150 mm2. However, it remains in most cases unknown whether this nominal area coincides with the “net active sensor area” that should be given according to the related standard ISO 15632, or with any other area of the detector device. Moreover, the specific geometry of EDS installation may further reduce a given detector area. The proposed method can be applied to most scanning electron microscope/EDS configurations. The basic idea consists in a comparison of the measured count rate with the count rate resulting from known X-ray yields of copper, titanium, or silicon. The method was successfully tested on three detectors with known effective area and applied further to seven spectrometers from different manufacturers. In most cases the method gave an effective area smaller than the area given in the detector description.
We present a simple and robust method to acquire quantitative maps of compositional fluctuations in nanostructures from low magnification high-angle annular dark field (HAADF) micrographs calibrated by energy-dispersive X-ray (EDX) spectroscopy in scanning transmission electron microscopy (STEM) mode. We show that a nonuniform background in HAADF-STEM micrographs can be eliminated, to a first approximation, by use of a suitable analytic function. The uncertainty in probe position when collecting an EDX spectrum renders the calibration of HAADF-STEM micrographs indirect, and a statistical approach has been developed to determine the position with confidence. Our analysis procedure, presented in a flowchart to facilitate the successful implementation of the method by users, was applied to discontinuous InGaN/GaN quantum wells in order to obtain quantitative determinations of compositional fluctuations on the nanoscale.
In this work we reported low and high repetition frequency femtosecond laser-induced modifications of tungsten-based thin film. The tungsten-titanium (WTi) thin film, thickness of 190 nm, was deposited by sputtering on single crystal Si (100) wafer. Irradiations were performed in air by linearly polarized and focused femtosecond laser beams with following parameters: (1) pulse duration 160 fs, wavelength 800 nm, laser repetition frequency (LRF) 75 MHz — high LRF, and (2) duration 40 fs, wavelength 800 nm, LRF of 1 kHz — low LRF. The results of femtosecond lasers processing of the WTi thin film revealed laser induced periodical surface structures (LIPSS) in the case of low LRF regime. LIPSSs were formed with different periodicity and different orientation to the laser polarization at the surface: micro-scale LIPSSs with orientation perpendicular to the laser polarization and nano-scale LIPSSs parallel and perpendicular to the laser polarization. After processing of the WTi/Si system in high LRF regime ablation and nano-particles formation were registered.
The analytical performance of high-resolution scanning electron microscopy/energy dispersive X-ray spectroscopy (SEM/EDX) for accurate determination of the size, size distribution, qualitative elemental analysis of nanoparticles (NPs) was systematically investigated. It is demonstrated how powerful high-resolution SEM is by using both mono- and bi-modal distributions of SiO2 airborne NPs collected on appropriate substrates after their generation from colloidal suspension. The transmission mode of the SEM (TSEM) is systematically employed for NPs prepared on thin film substrates such as transmission electron microscopy grids. Measurements in the transmission mode were performed by using a “single-unit” TSEM transmission setup as manufactured and patented by Zeiss. This alternative to the “conventional” STEM detector consists of a special sample holder that is used in conjunction with the in-place Everhart–Thornley detector. In addition, the EDX capabilities for imaging NPs, highlighting the promising potential with respect to exploitation of the sensitivity of the new large area silicon drift detector energy dispersive X-ray spectrometers were also investigated. The work was carried out in the frame of a large prenormative VAMAS (Versailles Project on Advanced Materials and Standards) project, dedicated to finding appropriate methods and procedures for traceable characterization of NP size and size distribution.
A novel concept of immobilization of light water nuclear reactor fuel reprocessing waste effluent through interaction with sodium zirconium phosphate (NZP) has been established. It was found that a large number of hazardous cations could be loaded in the NZP-based matrix without significant change of three-dimensional framework structure. Starting from the raw powder diffraction data of polycrystalline solid phases, crystal structure of substituted NZP phases has been investigated using the General Structure Analysis System (GSAS) package. Cation(s) substituted NZP phases crystallize in rhombohedral symmetry (space group R-3c and Z = 6). Powder diffraction data have been subjected to Rietveld refinement to reach satisfactory structural convergence of R-factors. Unit cell parameters, inter atomic distances, bond angles, reflecting planes (h, k, l), structure factors, polyhedral (ZrO6 and PO4) distortion, and particle size have been reported. PO4 stretching and bending vibrations in the Infra red (IR) region have been assigned. SEM and EDAX analysis provide analytical evidence of fixation of cations in the matrix.
Given an unknown multicomponent alloy, and a set of standard compounds or alloys of known composition, can one improve upon popular standards-based methods for energy dispersive X-ray (EDX) spectrometry to quantify the elemental composition of the unknown specimen? A method is presented here for determining elemental composition of alloys using transmission electron microscopy–based EDX with appropriate standards. The method begins with a discrete set of related reference standards of known composition, applies multivariate statistical analysis to those spectra, and evaluates the compositions with a linear matrix algebra method to relate the spectra to elemental composition. By using associated standards, only limited assumptions about the physical origins of the EDX spectra are needed. Spectral absorption corrections can be performed by providing an estimate of the foil thickness of one or more reference standards. The technique was applied to III-V multicomponent alloy thin films: composition and foil thickness were determined for various III-V alloys. The results were then validated by comparing with X-ray diffraction and photoluminescence analysis, demonstrating accuracy of approximately 1% in atomic fraction.
The possibility of scanning electron microscope (SEM) observation and energy dispersive X-ray (EDX) spectrometry analysis in microscale regions of insulating samples using diluted ionic liquid was investigated. It is possible to obtain clear secondary electron images of insulating samples such as a rock and mineral at 5,000 times magnification by dropping 10 μL of 1 wt% of 1-ethyl-3-methylimidazolium acetate (EMI-CH3COO) diluted with ethanol onto the samples. We also obtained EDX spectra of the samples in microscale regions (∼5 μm2) without overlapping EDX spectra of other minerals with different composition. It might be possible to perform quantitative analysis of the samples if a method that does not need standard samples is applied or an X-ray detector sensitive for light elements was attached. The method of dropping 1 wt% EMI-CH3COO diluted with ethanol onto insulating samples is useful for SEM observation, EDX analysis in microscale regions, and the preservation of scarce rock and mineral samples because ionic liquid can be easily removed with acetone.
We have investigated the potential of utilizing analytical electron microscopy to quantitatively examine the grounds used by van Gogh and, in particular, the absolute amount of extender employed. To determine the accuracy that can be achieved, a series of oil paint reconstructions were used as standards. The proportion of extender was measured using scanning electron microscopy and energy dispersive X-ray spectroscopy, and a relative error of 10% or better was achieved. The same method was then used to determine the ground composition of real samples from van Gogh paintings. The results obtained in this work are part of a more quantitative method of comparing and classifying paint cross sections, which will supplement the more traditional qualitative approach. The information obtained from this study is being used to add to our knowledge of the methods and materials used by van Gogh, which is helping in the reconstruction of van Gogh's oeuvre and attribution.
Magnetic nanocomposite materials consisting of 5 and 10 wt% CoFe2O4 nanoparticles in a silica aerogel matrix have been synthesized by the sol-gel method. For the CoFe2O4-10wt% sample, bright-field scanning transmission electron microscopy (BF STEM) and high-resolution transmission electron microscopy (HREM) images showed distinct, rounded CoFe2O4 nanoparticles, with typical diameters of roughly 8 nm. For the CoFe2O4-5wt% sample, BF STEM images and energy dispersive X-ray (EDX) measurements showed CoFe2O4 nanoparticles with diameters of roughly 3 ± 1 nm. EDX measurements indicate that all nanoparticles consist of stoichiometric CoFe2O4, and electron energy-loss spectroscopy measurements from lines crossing nanoparticles in the CoFe2O4-10wt% sample show a uniform composition within nanoparticles, with a precision of at best than ±0.5 nm in analysis position. BF STEM images obtained for the CoFe2O4-10wt% sample showed many “needle-like” nanostructures that typically have a length of ∼10 nm and a width of ∼1 nm, and frequently appear to be attached to nanoparticles. These needle-like nanostructures are observed to contain layers with interlayer spacing 0.33 ± 0.1 nm, which could be consistent with Co silicate hydroxide, a known precursor phase in these nanocomposite materials.
Magnetic nanocomposite materials consisting of 5.5 wt% Fe-Co alloy nanoparticles in a silica aerogel matrix, with compositions FexCo1−x of x = 0.50 and 0.67, have been synthesized by the sol-gel method. The high-resolution transmission electron microscopy images show nanoparticles consisting of single crystal grains of body-centered cubic Fe-Co alloy, with typical crystal grain diameters of approximately 4 and 7 nm for Fe0.5Co0.5 and Fe0.67Co0.33 samples, respectively. The energy dispersive X-ray (EDX) spectra summed over areas of the samples gave compositions FexCo1−x with x = 0.48 ± 0.06 and 0.68 ± 0.05. The EDX spectra obtained with the 1.5 nm probe positioned at the centers of ∼20 nanoparticles gave slightly lower concentrations of Fe, with means of ⟨x⟩ = 0.43 ± 0.01 and ⟨x⟩ = 0.64 ± 0.02, respectively. The Fe0.5Co0.5 sample was studied using electron energy loss spectroscopy (EELS), and EELS spectra summed over whole nanoparticles gave x = 0.47 ± 0.06. The EELS spectra from analysis profiles of nanoparticles show a distribution of Fe and Co that is homogeneous, i.e., x = 0.5, within a precision of at best ±0.05 in x and ±0.4 nm in position. The present microscopy results have not shown the presence of a thin layer of iron oxide, but this might be at the limit of detectability of the methods.
Amounts of mineral nutrients and aluminium (Al) were assessed in the globoid inclusions, proteinaceous matrix and druse crystals of Eucalyptus calophylla seeds collected from trees grown in coal-mine (mean soil pH 4.3, Al 260 μg g−1) and forest soils (pH 5.3, Al 10 μg g−1). Energy-dispersive X-ray microanalysis (EDX) of bulk frozen hydrated samples indicated that significantly higher amounts of Mg, P, S, K and Ca occurred in the globoid inclusions of mine- than forest-site seeds. In both seedstocks, Al was detected in the globoid inclusions but not in the proteinaceous matrix or druse crystals. Significantly higher amounts of Al occurred in mine-site samples of dry and germinating seeds than in forest-site seeds. It was concluded that globoid inclusions may be useful as indicators of the soil conditions in which the parent plant was grown.
Protein storage vacuoles (PSVs) from radicles and cotyledons of dry cotton seeds were isolated by differential centrifugation following homogenization in glycerol. Protein complement analysis of isolated PSVs with one dimensional SDS-PAGE gels revealed similar major storage proteins, viz. 53 and 48 kDa, with differences in lower molecular mass proteins. Radicle PSVs have apparently more 35-kDa and less 22-kDa storage protein than do cotyledon PSVs. The mineral composition of whole radicles, cotyledons and isolated PSVs from radicles and cotyledons was determined by atomic absorption spectroscopy and colorimetric elemental analyses. The concentration of calcium (Ca), magnesium (Mg), potassium (K) and phosphate (P) was lower in isolated PSVs from radicles than from cotyledons, resulting in a marked difference in the Mg/Ca and (Mg+Ca)/K ratios in PSVs from these two sources. Analysis of radicle and cotyledon tissue from dry seeds for mineral distribution with EDX and scanning electron microscopy revealed major concentrations of Mg, K and P in PSVs. These observations indicate that PSVs in radicles are similar in protein and mineral composition to PSVs in cotyledons. PSVs in radicles have the potential function as storage organelles to provide minerals and nutrients for radicle growth during imbibition and germination.
Cation exchange capacity (CEC) characterizes the number of fixed
negative charges of plant cell walls and is an important parameter in
studies dealing with the uptake of ions into plant tissues, especially in
roots. Conventional methods of CEC determination use bulk tissue, the
results are the mean of many cells, and differences in the CEC of
different tissue types are masked. Energy-dispersive microanalysis (EDX)
in the transmission electron microscope allows CEC determinations on much
finer scales. Shoot and fine root tissue of Picea abies was acid
washed to remove exchangeable cations. Tissue blocks or semithin tissue
sections were loaded with 0.2 mM CaCl2, AlCl3, or
Pb(NO3)2 at pH 4.0. The amount of Ca, Al, or Pb
adsorbed to the exchange sites of cell walls was determined by EDX. The
CEC of cell walls of different tissue types was highly different, ranging
in shoot tissues from 0 to 856 mM Ca and 5.8 to 1463 mM Al (block loading)
or 4.3 to 1116 mM Ca and 0 to 2830 mM Al (section loading). In root
tissue, Pb adsorption to semithin sections yielded CEC values between 29.1
and 954 mM Pb. In most P. abies shoot tissues, the binding
capacity was clearly higher for Al than for Ca.
During lab-scale experiments on the reforming of methanol by means of
water at supercritical conditions (T > 374°C, p
> 22.1 MPa), a tubular reactor with a titanium liner was exposed to an
aqueous solvent containing methanol (5 wt%) and KHCO3 (0.3
wt%). At the end of the run, a fibrous precipitate was found at two
positions in the reactor. The material was studied in a field emission
scanning electron microscope equipped with an energy dispersive X-ray
analysis unit (FESEM/EDX). A thin-film support technique using
carbon-filmed TEM grids was applied to perform scanning transmission-type
imaging (STEM-in-SEM operation) and transmission current measurements. The
analysis of the hydrothermally grown fibers resulted in a potassium
titanate species composed of approximately K2TiO3,
which has been confirmed by X-ray diffraction (XRD).
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.