We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Differences were found in the differential thermal analysis curves and in the temperatures of new-phase development between allophanes of high (1.91–1.99) and low (1.47–1.53) SiO2/Al2O3 ratios. The endothermic peak due to continuous dehydration and dehydroxylation was at higher temperatures (153°-185°C) for allophanes with high SiO2/Al2O3 ratios and at lower temperatures (148°–165°C) for those with low SiO2/Al2O3 ratios. The temperature of the exothermic peak was lower and the height affected more by the exchangeable cation content for allophanes with high ratios than for those with low ratios. New phases did not develop in allophanes having high Si02/Al2O3 ratios even after they were heated to 1000°C, above the temperature of the exothermic peak. In contrast, a symptomatic development of new phases was noted in allophanes with low SiO2/Al2O3 ratios at 900°C, below the temperature of the exothermic peak. The effect of SiO2/Al2O3 ratio in the thermal behavior of allophane strongly suggests that differences in the structure are closely associated with the chemical composition of this material.
The structure and hydration status of attapulgite clay after heating at elevated temperatures and the stability of parathion on these clays was studied. Using infrared spectroscopy and scanning electron microscopy it was found that the bound water was lost in two steps, at 250° and 450° with the first step being largely reversible. At 650°C the structure began to dissolve releasing significant amounts of Mg, and a decrease in aggregate porosity was noted. At 850°C an amorphous phase was formed bearing little resemblance to the original attapulgite. Parathion was stable on all of the preheated clays when kept at 25°C for 190 days. The reactions of parathion on the preheated clays was studied at 110°C Hydrolysis of parathion was found to be minimal. Isomerization was the main reaction occurring on the Ca-attapulgite, whereas on an organo-clay no isomerization was observed. A mechanism for the isomerization reaction is proposed which entails a distortion of the phosphate moiety of the pesticide by the oxygen of the ligand water resulting in the conformational changes necessary for the isomerization to take place. On the organo-clay such a conformation was not possible; hence no isomerization occurred.
The hydrated form of tubular halloysite [halloysite (10 Å)] was observed by a conventional electron microscope equipped with an environmental cell (E.C.), by which the “natural” form was revealed without dehydration of the interlayer water. This study mainly reports the selected area electron diffraction (SAED) analysis of the halloysite (10 Å) and its morphological changes by dehydration. The SAED pattern showed halloysite (10 Å) has two-layer periodicity in a monoclinic structure with the unit cell parameters of a = 5.14 Å, b = 8.90 Å, c = 20.7 Å, β = 99.7°, in space group Cc, and almost the same structure as the dehydrated form of halloysite [halloysite (7 Å)]. This means that the dehydration of the interlayer water did not greatly change or affect the structure of halloysite (10 Å). Accompanying the dehydration of the interlayer water, there appeared along the halloysite tube axis clear stripes that were about 50–100 Å in width. The diameters of the tubular particles also increased about 10%. From the results of various experiments, such as a focussing series, observation of the surface structure by the replica method, observation of end-views of the tubular particles, and others, these two phenomena were explained as follows: Halloysite crystals have “domains” along the c-axis direction, the thicknesses of the “domains” vary ca. 50–100 Å. They are tightly connected with each other when the halloysite is hydrated, but are separated from each other by the dehydration of the interlayer water, whereupon the stripes come into existence along the tube axis. Taking these considerations into account, a model of dehydration is proposed. Moreover, a new method of calculating the β-angle is proposed in the Appendix.
Dimensional changes in kaolinite pellets as a function of temperature show two sharp shrinkage “steps,” at about 450–550°C and 900–980°C, which are roughly comparable in magnitude. Isothermal heat-soaking tests confirm that the rates for both are kinetically controlled. Water vapor inhibits shrinkage at low temperature but promotes shrinkage at high temperature. Both the former reaction, related to dehydroxylation, and the latter reaction, related to “mullitization,” take place at temperatures well below those observed in DTA, TG, and other measurements, indicating that bond-breaking is a necessary prelude to transitions at higher temperatures.
Bonding energy changes, as measured by X-ray fluorescence shifts, were used in interpreting the phenomena involved. The relative absence of bonding energy changes in the aluminum until the range 950–1100°C, and the presence of such changes in the silicon, suggest that high-temperature energy release is probably related to segregation or crystallization of silica, rather than of an aluminum-containing phase. Caution must be used in interpreting bonding energy changes, and in distinguishing kinetic and thermodynamic contributions to dynamic phenomena.
The dehydration reaction of kerolite was investigated using high-pressure differential thermal analysis at pressures as high as 600 bars. The peak associated with the dehydration is broad, suggesting the presence of a series of overlapping reactions ranging from the release of adsorbed water to interlayer water. The peak temperature is 136°C at 1.8 bars and increases to 516°C at 586 bars. The primary reaction represents loss of adsorbed water having a bond energy of 1.5 ± 1 kJ/mole. A small amount of water may be present as interlayer water and has a bond energy of 7.5 ± 3 kJ/mole.
The rehydration properties and behavior of interlayer cations of Ca-, Mg-, Na-, and K-saturated homoionic saponite and vermiculite heated at various temperatures were examined and their rehydration mechanisms elucidated. The most notable features of saponite were (1) except for the Mg-saturated specimen, all saponite samples rehydrated until the crystal structure was destroyed by heating; (2) the rehydration rate in air after heating decreased in the order: K+ > Na+ > Ca2+ > Mg2+; (3) the interlayer cations apparently migrated into hexagonal holes of the SiO4 network on thermal dehydration; and (4) the b-parameter expanded on thermal dehydration. The rehydration properties and behavior of interlayer cations of vermiculite were: (1) except for the K-saturated specimen, all vermiculite samples rehydrated until the crystal structure was destroyed by heating; (2) the rehydration rate in air after heating decreased in the order: Mg2+ > Ca2+ > Na+ > K+; (3) the interlayer cations apparently did not migrate into the hexagonal holes, but remained at the center of the interlayer space, even after thermal dehydration; and (4) except for the K-saturated specimen, the 6-parameters of the samples contracted on thermal dehydration. The different rehydration properties of saponite and vermiculite were apparently due to the behavior of the interlayer cations during thermal dehydration. For rehydration to occur, the interlayer cations of saponite had to migrate out of the hexagonal holes. Consequently, saponite saturated with a large cation rehydrated rapidly, whereas saponite saturated with a small cation rehydrated slowly. On the other hand, the interlayer cations of vermiculite remained in the interlayer space; therefore, the rehydration properties of vermiculite were strongly affected by the hydration energies of the interlayer cations. Furthermore, electron diffraction patterns suggested that the saponite and vermiculite consisted of random stacking and ordered stacking of adjacent 2:1 layers, respectively. The nature of the stacking of the minerals seemed to be the most important factor controlling the behavior of interlayer cations in the thermal dehydration process.
Several hydrates can be synthesized from well-crystallized kaolinites; of importance to the present work are a 10-Å hydrate (called the QS-10 hydrate), an 8.6-Å hydrate, and two kinds of partially dehydrated mixed-layer hydrates. One kind is a series of unstable materials with d(001) varying continuously between 10 and 8.6 Å, and the other kind is stable with d(001) approximately centered at 7.9 Å. The 10- and 7.9-Å phases have been observed in halloysites by many workers using X-ray powder diffraction, and the 8.6-Å phase has been seen by others in selected area electron diffraction photographs. Infrared spectra reveal additional similarities between the synthetic hydrates and both halloysite(10Å) and partially dehydrated halloysites. Because of these similarities, the synthetic hydrates can be used to develop a model for the dehydration of halloysite(10Å).
Previous work on the 10- and 8.6-Å hydrates identified two structural environments for the interlayer water. In one, the water is keyed into the ditrigonal holes of the silicate layer (hole water), and in the other, the water is more mobile (associated water). Both types are found in the QS-10 hydrate and halloysite(10Å), whereas only hole water occurs in the 8.6-Å hydrate. In the QS-10 hydrate, stronger hydrogen bonding between hole water and the clay makes the hole water more stable than the associated water. This difference in stability is responsible for a two-step dehydration process. The first step is the loss of associated water which results in a material with d(001) = 8.6 Å. This stable hydrate must be heated to temperatures near 200°C to drive off the remaining hole water. The less perfect structure of halloysite and its common curvilinear morphology reduce the difference in stability between hole and associated water molecules, so that when halloysite(10Å) dehydrates, loss of hole water and associated water overlaps, and the d-spacing goes directly to 7.2–7.9 Å.
To understand and predict the effects of a thermal pulse induced by a radioactive waste repository on clinoptilolite-bearing rocks, the lattice parameters of 6 natural and 3 cation-exchanged (Ca, K, Na) clinoptilolites were studied as a function of temperature. The samples were examined at room temperature, under vacuum, and at 50°C increments to 300°C using a high-temperature X-ray powder diffractometer. The unit cell of all samples decreased in volume between 20° and 300°C Na-saturated clinoptilolite underwent the greatest volume decrease (8.4%) and K-saturated clinoptilolite the smallest (1.6%), of the clinoptilolites studied. The volume decrease for the Ca-saturated clinoptilolite was 3.6%. The highest percentage decrease for each sample was along the b axis, generally 80–90% of the total volume decrease. The change in the a axis was the smallest and was usually <5%, although 26.5% of the contraction of the Na-exchanged clinoptilolite was along a. The bulk of the volume contraction of many samples occurred on evacuation at room temperature, demonstrating that the observed changes were due to water loss and not to temperature-induced structural changes. Low-angle scattering was significantly reduced upon evacuation for every sample, and the 110 reflection of clinoptilolite at 7.45°2θ became obvious, whereas it was not in the untreated samples.
These data show that the effects of heating on the unit-cell volume of clinoptilolite depend strongly on the exchangeable cation content. Significant reductions in the unit-cell volumes of natural, mixed Na-K-Ca clinoptilolites could take place in rocks in a repository environment, particularly if the clinoptilolites occurred in unsaturated, dehydrated rock. The unit-cell volumes of clinoptilolites in partially saturated rocks at temperatures below 100°C, however, should not decrease significantly.
Electron spin resonance (ESR) analysis of Cu2+-hectorite suspensions provides evidence for the surface-induced hydrolysis of Cu(H2O)62+ at low pH and surface-inhibited hydrolysis (or precipitation) at high pH. Dehydration of the hectorite by heating to 110°C appears to promote hydrolysis in high pH clays further. Heating to even higher temperatures removes ligand water from Cu2+, allowing the metal ion to coordinate with silicate oxygen atoms. The planar Cu(H2O)42+ ion predominates in the interlamellar regions of hectorite that has been air dried or heated to temperatures of 110°C or lower, but more extreme thermal treatment changes the apparent orientation of the Cu2+-ligand axes as some or all of the four water ligands are removed, A loss in ESR signal intensity upon heating Cu2+-hectorite above 110°C is evidence for lowered symmetry of the dehydrated, surface-coordinated Cu2+ ion.
Dehydration-induced migration of different exchangeable cations toward the layers of nontronite has been studied by Mössbauer spectroscopy. As interlayer water is removed exchangeable cations migrate toward Fe3+ sites in the tetrahedral sheets of the nontronite (IvFe3+) causing them to distort. The amount of distortion is linearly related to the ionic potential (IP) of the exchangeable cations and is greatest for cations with highest IP. Octahedral Fe3+ sites (VIFe3+) are also affected by migration of cations into the pseudohexagonal cavities. As exchangeable cations move into the pseudohexagonal cavities, interaction with VIFe3+ sites increases. The intensity of the outer VIFe3+ Mössbauer doublet increases with respect to the inner VIFe3+ doublet as the IP of the exchangeable cation increases. It appears that the exchangeable cations play a significant role in determining the thermal stability of nontronite.
The rehydration properties of Ca-, Mg-, Na-, and K-saturated homoionic beidellites after heating at various temperatures were compared with those of montmorillonites. The behavior of interlayer Na+ during dehydration and rehydration was also investigated by means of one-dimensional Fourier analysis. The K- and Mg-saturated specimens exhibited fast and slow rehydration rates, respectively, during exposure to air of 50% RH after heating at 800°C. These homoionic specimens showed strong rehydration properties on saturation with deionized water after heating <900°C for 1 hr. On the basis of Fourier analysis, the interlayer cations appeared to have migrated into the hexagonal holes of SiO4 network on thermal dehydration, and the migrated cations returned to the interlayer space on rehydration. This behavior of the interlayer cations appears to have been strongly dependent on value of the octahedral negative charge and on the sizes of interlayer cations. The small octahedral negative charge of beidellite produced a weaker attractive electrostatic force between the octahedral sheets and the migrated interlayer cations. Therefore, the migrated interlayer cations in beidellite were easily extracted from the hexagonal holes, and rehydration was rapid. The small cation migrated easily into hexagonal holes and was fixed to the holes. On the contrary, large cations were probably difficult to fix and were easily extracted from the hexagonal holes. Consequently, the rehydration rate of K-saturated beidellite was fast, and that of Mg-saturated beidellite was slow.
Dehydration-induced luminescence (DIL), the emission of light from a clay paste upon dehydration, was characterized experimentally for a colloidal kaolinite. The relationship between total photon count of the emitted light and film thickness is linear up to a thickness of 30 μm. The photon emission was obtained over a critical range of water contents (25-60%) of the oven-dry clay, and the kinetics of photon emission was presumed to be closely associated with the kinetics of film dehydration. Whether drying proceeded throughout the bulk or via a moving front was undetermined, but in either mode it was preceded by the formation of a thin dry film at the interface with the atmosphere. Grinding of the kaolinite for several minutes by mortar and pestle before paste preparation resulted in an overall increase of photon emission compared to unground kaolinite and in the formation of more than one emission peak, as well as a prolongation of the light emission. This effect on the kinetics of light emittance was observed for about two months after the application of the mechanical stress and suggests a means of detecting the mechanical stress history of a clay.
An estimate was made of the spectral characteristics of the emitted light using optical filters and by incorporating tryptophan and salicylic acid into the kaolinite paste where they acted as fluorescent probes. The latter technique shifted the frequency of the light emitted by the kaolinite from the ultraviolet to the visible range where it was less effectively reabsorbed. The first method showed that the wavelengths of 97% of the emitted light was <460 nm and that 75% of the light had wavelengths <410 nm. The second method showed that the total intensity of DIL increased in the presence of fluorescence molecules, suggesting that the emittance was in the ultraviolet range.
Mössbauer spectra were obtained for five Ca-exchanged nontronites and one Ca-exchanged vermiculite as the 2-layer hydrates following dehydration at 200°C. Exchange of the samples with Ca2+ and subsequent dehydration resulted in the appearance of a shoulder at about −0.50 mm/s in the Mössbauer spectra of some of the samples. The appearance of these shoulders necessitated the inclusion of doublets with Mössbauer parameters corresponding to tetrahedrally-coordinated Fe3+ (IVFe3+) in the model used to fit the Mössbauer spectra. That the IVFe3+ sites detected in these samples were those in the nontronite structure was confirmed using samples whose IVFe3+ contents have been previously determined from chemical analysis. It appears that this sample preparation method allowed IVFe3+ contents to be determined to within 40%. On this basis, the IVFe3+ content appeared to be unrelated to the total Fe content for the samples studied.
The dehydration temperature of K-montmorillonite, obtained by ion exchange of a Na-mont-morillonite, was determined at pressures to 2 kbar, using high-pressure differential thermal analysis. Dehydration reactions were found at about 50° and 100°C above the liquid-vapor curve of water. At pressures above the critical point of water the dehydration temperatures increased only slightly. The temperature of the first dehydration reaction is 10°C higher than for Na-montmorillonite, indicating a slightly greater stability of the hydration shell around the potassium interlayer cation. The second dehydration reaction occurs at a slightly lower temperature. The data were used to determine the enthalpy of the dehydration ΔH(dh) and the bonding enthalpy of the interlayer water ΔH(iw) at 1 atm. The first dehydration reaction of the K-exchanged montmorillonite has a ΔH(dh) = 46.16 ± 0.06 kJ/mole and a ΔH(iw) = 7.8 ± 0.5 kJ/mole, whereas for the second reaction, ΔH(dh) = 56.7 ± 2 kJ/mole and ΔH(iw) = 19.8 ± 2 kJ/mole. These values compare with a ΔH(dh) = 46.8 ± 0.3 kJ/mole and a ΔH(iw) = 7.8 ± 0.5 kJ/mole for the first dehydration reaction of the Na-montmorillonite and a ΔH(dh) = 62.9 ± 2 kJ/mole and ΔH(iw) = 27.1 ± 2 kJ/mole for the second dehydration.
The dehydration and migration of the interlayer cation of the synthetic beidellite Na0.7Al4.7Si7.3O20-(OH)4·nH2O, were studied with solid-state 23Na and 27Al MAS-NMR, heating stage XRD, and thermogravimetric analyses (TGA, DTA). The 23Na MAS-NMR of Na-beidellite at 25°C displays a chemical shift of 0.2 ppm, which indicates a configuration comparable with that of Na+ in solution. Total dehydration proceeds reversibly in two temperature ranges. Four water molecules per Na+ are gradually removed from 25° to 85°C. As a result, the basal spacing decreases from 12.54 Å to 9.98 Å and the Na+ surrounded by the two remaining water molecules is relocated in the hexagonal cavities of the tetrahedral sheet. The chemical shift of 1.5 ppm exhibited after the first dehydration stage illustrates the increased influence of the tetrahedral sheet. The high local symmetry is maintained throughout the entire first dehydration stage. During the second dehydration, which proceeds in a narrow temperature range around 400°C, the remaining two water molecules are removed reversibly without any change of the basal spacing.
Halloysite is a common pedogenic clay mineral, often found in young soils developed on volcanic deposits (Dixon, 1989), It is a member of the kaolin group of clays with the same ideal stoichiometric composition as kaolinite [Al2Si2O5(OH)4]. Halloysite, however, often contains water of hydration (i,e., Al2Si2O5(OH)4·nH2O), and is commonly found with a tubular morphology, This “rolling” of halloysite has received a great deal of study because there is no generally agreed upon mechanism for the process and there is no corresponding phenomenon in natural kaolinite (e.g. , Bates et al., 1950; Bailey, 1989; Singh, 1996; Singh and Mackinnon, 1996). The crystal structure of halloysite often shows stacking disorder. This property, combined with a rolled morphology, makes identification by X-ray diffraction (XRD) difficult. The XRD peaks at 7.5, 4.4, and 3.6 Å are often asymmetric with a large width at half peak height (Bailey, 1989).
A white calcium bentonite (CaB) from the Kütahya region, Turkey, contains 35 wt. % opal-CT and 65 wt. 9c Ca-rich montmorillonite (CaM). Samples were heated at various temperatures between 100–1300°C for 2 h. Thermal gravimetric (TG), derivative thermal gravimetric (DTG), and differential thermal analysis (DTA) curves were determined. Adsorption and desorption of N2 at liquid N2 temperature for each heat-treated sample was determined. X-ray diffraction (XRD) and cation-exchange capacity (CEC) data were obtained. The change in the <d(001) value and the deformation of the crystal structure of CaM depend on temperature. Deformation is defined here as changes of the clay by dehydration, dehydroxylation, recrystallization, shrinkage, fracture, etc. The activation energies related to the dehydration and dehydroxylation of CaB calculated from the thermogravimetric data are 33 and 59 kJ mol−1, respectively. The average deformation enthalpies, in the respective temperature intervals between 200–700°C and 700–900°C, were estimated to be 25 and 205 kJ mol−1 using CEC data and an approach developed in this study. The specific surface area (S) and the specific micropore-mesopore volume (V) calculated from the adsorption and desorption data, respectively, show a “zig zag” variation with increasing temperature to 700°C, but decrease rapidly above this temperature. The S and V values were 43 m2 g−1 and 0.107 cm3 g−1, respectively, for untreated bentonite. They reach a maximum at 500°C and are 89 m2 g−1 and 0.149 cm3 g−1 respectively. The XRD data clearly show that, at 500°C, where the irreversible dehydration is completed without any change in the crystal structure, the porosity of CaM reaches its maximum.
We aim to understand the effects of hydration changes on athletes’ neuromuscular performance, on body water compartments, fat-free mass hydration and hydration biomarkers and to test the effects of the intervention on the response of acute dehydration in the hydration indexes. The H2OAthletes study (clinicaltrials.gov ID: NCT05380089) is a randomised controlled trial in thirty-eight national/international athletes of both sexes with low total water intake (WI) (i.e. < 35·0 ml/kg/d). In the intervention, participants will be randomly assigned to the control (CG, n 19) or experimental group (EG, n 19). During the 4-day intervention, WI will be maintained in the CG and increased in the EG (i.e. > 45·0 ml/kg/d). Exercise-induced dehydration protocols with thermal stress will be performed before and after the intervention. Neuromuscular performance (knee extension/flexion with electromyography and handgrip), hydration indexes (serum, urine and saliva osmolality), body water compartments and water flux (dilution techniques, body composition (four-compartment model) and biochemical parameters (vasopressin and Na) will be evaluated. This trial will provide novel evidence about the effects of hydration changes on neuromuscular function and hydration status in athletes with low WI, providing useful information for athletes and sports-related professionals aiming to improve athletic performance.
Water-vapor sorption experiments were conducted to quantify bulk volume change of compacted expansive clay specimens resulting from interlayer hydration and dehydration in the crystalline swelling regime. Effects of interlayer cation type and pore fabric are examined by comparing results for natural Na+-smectite and Ca2+-smectite specimens compacted over a range of initial bulk densities. Transitions in interlayer hydration states are reflected in the general shape of the sorption isotherms and corresponding relationships between humidity and volume change. Hysteresis is observed in both the sorption and volume-change response. Volume change for Ca2+-smectite specimens is significantly greater than for Na+-smectite over the entire range of packing densities considered. Loosely compacted specimens result in less volume change for both clays. Results are interpreted in light of a conceptual framework based on previous SEM and TEM observations of particle and pore fabric for Na+ and Ca2+ smectite at high suctions. A pore-scale microstructural model is developed to quantitatively assess changes in interlayer and interparticle void volume during hydration. Modeling suggests that the relatively small volume changes observed for Na+-smectite are attributable to a reduction of interparticle void volume as expanding quasicrystals encroach into surrounding larger-scale pores. Volume change hysteresis is attributed to unrecovered alterations in interparticle fabric required to accommodate the swelling process. The results provide new insight to address volume change upscaling, hysteresis, and the general evolution of bi-modal pore fabric during crystalline swelling.