We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Calypso® 4D Localization System is a system based on electromagnetic transponders detection enabling precise 3D localisation and continuous tracking of tumour target. This review intended to provide information in order to (1) show how Calypso® 4D Localization System works, (2) to present advantages and disadvantages of this system, (3) to gather information from several clinical studies and, finally, (4) to refer Calypso® System as a tool in dynamic multileaf collimator studies for target motion compensation.
Methods
A structured search was carried out on B-On platform. The key words used in this research were ‘Calypso’, ‘Transponder’, ‘Electromagnetic Localization’, ‘Electromagnetic Tracking’, ‘Target Localization’, ‘Intrafraction Motion’ and ‘DMLC’.
Review
Treatment the implanted transponders are excited by an electromagnetic field and resonate back. These frequencies are detected and Calypso® software calculates the position of the transponders. If the movement detected is larger than the limits previously defined, irradiation can be stopped. The system has been proven to be submillimetre accurate.
Discussion
Calypso® System has been presented as an accurate tool in prostate radiotherapy treatments. The application of this system to other clinical sites is being developed.
Conclusion
The Calypso® System allows real-time localisation and monitoring of the target, without additional ionising radiation administration. It has been a very useful tool in prostate cancer treatment.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.