We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Large-eddy simulation (LES) using an unstructured overset numerical method is performed to study the flow around a ducted marine propeller for the highly unsteady off-design condition called crashback. Known as one of the most challenging propeller states to analyse, the propeller rotates in the reverse direction to yield negative thrust while the vehicle is still in forward motion. The LES results for the marine propeller David Taylor Model Basin 4381 with a neutrally loaded duct are validated against experiments, showing good agreement. The simulations are performed at Reynolds number of 561 000 and an advance ratio $J=-0.82$. The flow field around the different components (duct, rotor blades and stator blades) and their impact on the unsteady loading are examined. The side-force coefficient $K_S$ is mostly generated from the duct surface, consistent with experiments. The majority of the thrust and torque coefficients $K_T$ and $K_Q$ arise from the rotor blades. A prominent contribution to $K_Q$ is also produced from the stator blades. Tip-leakage flow between the rotor blade tips and duct surface is shown to play a major role in the local unsteady loads on the rotor blades and duct. The physical mechanisms responsible for the overall unsteady loads and large side-force production are identified as globally, the vortex ring and locally, leading-edge separation as well as tip-leakage flow which forms blade-local recirculation zones.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.