We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
To develop an equation that can estimate the 24-h urinary Na excretion by using casual spot urine specimen for older hypertensive participants in rural Ningxia and further to compare with the INTERSALT method, Kawasaki method and Tanaka method.
Design:
Older hypertensive participants in rural Ningxia provided their casual spot urine samples and 24-h urine samples between January 2015 and February 2017. Sex-specific equation was developed using linear forward stepwise regression analysis. Model fit was assessed using adjusted R2. Approximately half of all participants were randomly selected to validate the equation. Mean differences, intraclass correlation coefficients and Bland–Altman plots were used to evaluate the performance of all methods.
Setting:
Pingluo County and Qingtongxia County in Ningxia Hui Autonomous Region, China.
Participants:
Older hypertensive participants in rural Ningxia.
Results:
Totally, 807 of 1120 invited participants provided qualified 24-h urine samples and spot urine samples. There was no statistical difference comparing the laboratory-based method against the new method and the INTERSALT method, while Kawasaki method had the largest bias with a mean difference of 40·81 g/d (95 % CI 39·27, 42·35 g/d). Bland–Altman plots showed similar pattern of the results.
Conclusion:
The INTERSALT method and the new equation have the potential to estimate the 24-h urinary Na excretion in this study population. However, the extrapolation of the results to other population needs to be careful. Future research is required to establish a more reliable method to estimate 24-h urinary Na excretion.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.