We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We prove the following conjecture of Z.-W. Sun [‘On congruences related to central binomial coefficients’, J. Number Theory13(11) (2011), 2219–2238]. Let p be an odd prime. Then
where $H_n$ is the nth harmonic number and $B_n$ is the nth Bernoulli number. In addition, we evaluate $\sum _{k=0}^{p-1}(ak+b)\binom {2k}k/2^k$ modulo $p^3$ for any p-adic integers $a, b$.
We study the problem of approximating the value of a (weighted) integral of a function. We introduce the concepts of a quadrature rule and its consistency. Interpolatory quadrature rules and their construction are then discussed. Their error analysis, based on notions of previous chapters, is then presented. Then an error analysis based on the Peano Kernel Theorem and scaling arguments is developed. Newton-Cotes formulas then are developed and analyzed. Then, composite quadrature rules are presented and their use is illustrated. Their analysis is presented then, on the basis of Euler-Maclaurin formulas. The chapter concludes with a discussion of Gaussian quadrature formulas, their properties and optimality.
Let $b\,>\,1$ be an integer. We prove that for almost all $n$, the sum of the digits in base $b$ of the numerator of the Bernoulli number ${{B}_{2n}}$ exceeds $c$ log $n$, where $c\,:=\,c\left( b \right)\,>\,0$ is some constant depending on $b$.
We prove that ${ \mathbb{Z} }_{{p}^{n} } $ and ${ \mathbb{Z} }_{p} [t] / ({t}^{n} )$ are polynomially equivalent if and only if $n\leq 2$ or ${p}^{n} = 8$. For the proof, employing Bernoulli numbers, we explicitly provide the polynomials which compute the carry-on part for the addition and multiplication in base $p$. As a corollary, we characterize finite rings of ${p}^{2} $ elements up to polynomial equivalence.
We prove that the sequence {log ζ(n)}n≥2 is not holonomic, that is, does not satisfy a finite recurrence relation with polynomial coefficients. A similar result holds for L-functions. We then prove a result concerning the number of distinct prime factors of the sequence of numerators of even indexed Bernoulli numbers.
We present a fast Poisson solver on spherical shells. With a special change of variable, the radial part of the Laplacian transforms to a constant coefficient differential operator. As a result, the Fast Fourier Transform can be applied to solve the Poisson equation with operations. Numerical examples have confirmed the accuracy and robustness of the new scheme.
We obtain a generalized discrete Hilbert and Hardy-Hilbert inequality with non-conjugate parameters by means of an Euler-Maclaurin summation formula. We derive some general results for homogeneous functions and compare our findings with existing results. We improve some earlier results and apply the results to some special homogeneous functions.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.