We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We consider sums involving the divisor function over nonhomogeneous (
$\beta \neq 0$
) Beatty sequences
$ \mathcal {B}_{\alpha ,\beta }:=\{[\alpha n+\beta ]\}_{n=1}^{\infty } $
and show that
where N is a sufficiently large integer,
$\alpha $
is of finite type
$\tau $
and
$\beta \neq 0$
. Previously, such estimates were only obtained for homogeneous Beatty sequences or for almost all
$\alpha $
.
Let
$\pi $
be an automorphic irreducible cuspidal representation of
$\mathrm{GL}_{m}$
over
$\mathbb {Q}$
. Denoted by
$\lambda _{\pi }(n)$
the nth coefficient in the Dirichlet series expansion of
$L(s,\pi )$
associated with
$\pi $
. Let
$\pi _{1}$
be an automorphic irreducible cuspidal representation of
$\mathrm{SL}(2,\mathbb {Z})$
. Denoted by
$\lambda _{\pi _{1}\times \pi _{1}}(n)$
the nth coefficient in the Dirichlet series expansion of
$L(s,\pi _{1}\times \pi _{1})$
associated with
$\pi _{1}\times \pi _{1}$
. In this paper, we study the cancellations of
$\lambda _{\pi }(n)$
and
$\lambda _{\pi _{1}\times \pi _{1}}(n)$
over Beatty sequences.
We study sums involving multiplicative functions that take values over a nonhomogenous Beatty sequence. We then apply our result in a few special cases to obtain asymptotic formulas for quantities such as the number of integers in a Beatty sequence that are representable as a sum of two squares up to a given magnitude.
Three differently defined classes of two-symbol sequences, which we call the two-distance sequences, the linear sequences and the characteristic sequences, have been discussed by a number of authors and some equivalences between them are known. We present a self-contained proof that the three classes are the same (when ambiguous cases of linear sequences are suitably in terpreted). Associated with each sequence is a real invariant (having a different appropriate definition for each of the three classes). We give results on the relation between sequences with the same invariant and on the symmetry of the sequences. The sequences are closely related to Beatty sequences and occur as digitized straight lines and quasicrystals. They also provide examples of minimal word proliferation in formal languages.
Let θ = θ(k) be the positive root of θ2 + (k-2)θ-k = 0. Let f(n) = [(n + l)θ]-[nθ] for positive integers n, where [x] denotes the greatest integer in x. Then the elements of the infinite sequence (f(l), f(2), f(3),…) can be rapidly generated from the finite sequence (f(l), f(2),…,f(k)) by means of certain shift operators. For k = 1 we can generate (the characteristic function of) the sequence [nθ] itself in this manner.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.