Cotton genetically engineered to be resistant to topical applications of 2,4-D could provide growers with an additional tool for managing difficult-to-control broadleaf species. However, the successful adoption of this technology will be dependent on the ability of growers to manage off-target herbicide movement. Field experiments were conducted in Moultrie, GA, to evaluate cotton injury resulting from the volatilization of 2,4-D when formulated as an ester, an amine, or a choline salt. Each formulation of 2,4-D (2.24 kg ha−1) was applied in mixture with glyphosate (2.24 kg ha−1) directly to the soil surface (10 to 20% crop residue) in individual square blocks (750 m2). Following herbicide applications, replicate sets of four potted cotton plants (five- to seven-leaf stage) were placed at distances ranging from 1.5 to 48 m from the edge of each treatment. Plants were allowed to remain in-field for up to 48 h before being removed. Cotton exposed to 2,4-D ester for 48 h exhibited maximum injury ratings of 63, 57, 48, 29, 13, and 2% at distances of 1.5, 3, 6, 12, 24, and 48 m, respectively. Less than 5% injury was noted for the amine and choline formulations at any distance. Plant height was also affected by formulation and distance; plants that were located closest to the ester-treated block were smaller than their more distantly-positioned counterparts. Exposure to the amine and choline formulations did not affect plant heights. Additionally, two plastic tunnels were placed inside of each treated block to concentrate volatiles and maximize the potential for crop injury. Injury ratings of 76, 13, and 5% were noted for cotton exposed to the ester, amine, and choline formulations, respectively when under tunnels for 48 h. Results indicate that the choline formulation of 2,4-D was less volatile and injurious to cotton than the ester under the field conditions in this study.