We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Aplasia is a pathologic term that is broadly defined as the absence or near-absence of one or more haematopoietic lineages in the bone marrow (BM). Clinically, BM aplasia affecting more than one lineage is referred to as aplastic anaemia (AA), despite the fact that this group of disorders often results in pancytopaenia rather than anaemia alone. Cytopaenias can be seen in a number of different conditions, and new-onset pancytopaenia in children and adults requires an extensive work-up, including a BM core biopsy (BMB) for confirmation of haematopoietic aplasia/hypoplasia and exclusion of an infiltrative marrow process or fibrosis. Bone marrow aplasia develops as a result of injury to multipotent haematopoietic stem cells, which can occur in the context of constitutional (primary aplasia) or acquired (secondary aplasia) disorders (Table 4.1). This chapter will discuss the diagnostic criteria and pathophysiology of specific disorders presenting with aplasia and demonstrate an algorithmic approach to the diagnostic evaluation of patients presenting with this common and non-specific finding (Table 4.2).
To investigate whether the aetiology for hearing impairment in neonates with unilateral auditory neuropathy spectrum disorder could be explained by structural abnormalities such as cochlear nerve aplasia, a cerebellopontine angle tumour or another identifiable lesion.
Methods:
In this prospective case series, 17 neonates were diagnosed with unilateral auditory neuropathy spectrum disorder on electrophysiological testing. Diagnostic audiology testing, including auditory brainstem response testing, was supplemented with computed tomography and/or magnetic resonance imaging.
Results:
Ten of the neonates (59 per cent) showed evidence for cochlear nerve aplasia. Of the remaining seven, four were shown to have another abnormality of the temporal bone on imaging. Only three neonates (18 per cent) were not diagnosed with cochlear nerve aplasia or another lesion. Three computed tomography scans were reported as normal, but subsequent magnetic resonance imaging revealed cochlear nerve aplasia.
Conclusion:
Auditory neuropathy spectrum disorder as a unilateral condition mandates further investigation for a definitive diagnosis. This series demonstrates that most neonates with unilateral auditory neuropathy spectrum disorder had pathology as visualised on computed tomography and/or magnetic resonance imaging scans. Magnetic resonance imaging is an appropriate first-line imaging modality.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.