We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This chapter describes methods based on gradient information that achieve faster rates than basic algorithms such as those described in Chapter 3. These accelerated gradient methods, most notably the heavy-ball method and Nesterov’s optimal method, use the concept of momentum which means that each step combines information from recent gradient values but also earlier steps. These methods are described and analyzed using an analysis based on Lyapunov functions. The cases of convex and strongly convex functions are analyzed separately. We motivate these methods using continuous-time limits, which link gradient methods to dynamical systems described by differential equations. We mention also the conjugate gradient method, which was developed separately from the other method but which also makes use of momentum. Finally, we discuss the concept of lower bounds on algorithmic complexity, introducing a function on which no method based on gradients can attain convergence faster than a certain given rate.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.