We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We study the many-body localization (MBL) properties of the Heisenberg XXZ spin-$\frac 12$ chain in a random magnetic field. We prove that the system exhibits localization in any given energy interval at the bottom of the spectrum in a nontrivial region of the parameter space. This region, which includes weak interaction and strong disorder regimes, is independent of the size of the system and depends only on the energy interval. Our approach is based on the reformulation of the localization problem as an expression of quasi-locality for functions of the random many-body XXZ Hamiltonian. This allows us to extend the fractional moment method for proving localization, previously derived in a single-particle localization context, to the many-body setting.
The Choquard equation is a partial differential equation that has gained significant interest and attention in recent decades. It is a nonlinear equation that combines elements of both the Laplace and Schrödinger operators, and it arises frequently in the study of numerous physical phenomena, from condensed matter physics to nonlinear optics.
In particular, the steady states of the Choquard equation were thoroughly investigated using a variational functional acting on the wave functions.
In this article, we introduce a dual formulation for the variational functional in terms of the potential induced by the wave function, and use it to explore the existence of steady states of a multi-state version the Choquard equation in critical and sub-critical cases.
We consider a dilute fully spin-polarized Fermi gas at positive temperature in dimensions $d\in \{1,2,3\}$. We show that the pressure of the interacting gas is bounded from below by that of the free gas plus, to leading order, an explicit term of order $a^d\rho ^{2+2/d}$, where a is the p-wave scattering length of the repulsive interaction and $\rho $ is the particle density. The results are valid for a wide range of repulsive interactions, including that of a hard core, and uniform in temperatures at most of the order of the Fermi temperature. A central ingredient in the proof is a rigorous implementation of the fermionic cluster expansion of Gaudin, Gillespie and Ripka (Nucl. Phys. A, 176.2 (1971), pp. 237–260).
A semiclassical analysis based on spin-coherent states is used to establish a classification and novel simple formulae for the spectral gap of mean-field spin Hamiltonians. For gapped systems, we provide a full description of the low-energy spectra based on a second-order approximation to the semiclassical Hamiltonian, hence justifying fluctuation theory at zero temperature for this case. We also point out a shift caused by the spherical geometry in these second-order approximations.
We consider the large polaron described by the Fröhlich Hamiltonian and study its energy-momentum relation defined as the lowest possible energy as a function of the total momentum. Using a suitable family of trial states, we derive an optimal parabolic upper bound for the energy-momentum relation in the limit of strong coupling. The upper bound consists of a momentum independent term that agrees with the predicted two-term expansion for the ground state energy of the strongly coupled polaron at rest and a term that is quadratic in the momentum with coefficient given by the inverse of twice the classical effective mass introduced by Landau and Pekar.
We consider momentum push-forwards of measures arising as quantum limits (semiclassical measures) of eigenfunctions of a point scatterer on the standard flat torus
${\mathbb T}^2 = {\mathbb R}^2/{\mathbb Z}^{2}$
. Given any probability measure arising by placing delta masses, with equal weights, on
${\mathbb Z}^2$
-lattice points on circles and projecting to the unit circle, we show that the mass of certain subsequences of eigenfunctions, in momentum space, completely localizes on that measure and are completely delocalized in position (i.e., concentration on Lagrangian states). We also show that the mass, in momentum, can fully localize on more exotic measures, for example, singular continuous ones with support on Cantor sets. Further, we can give examples of quantum limits that are certain convex combinations of such measures, in particular showing that the set of quantum limits is richer than the ones arising only from weak limits of lattice points on circles. The proofs exploit features of the half-dimensional sieve and behavior of multiplicative functions in short intervals, enabling precise control of the location of perturbed eigenvalues.
We consider the Dirichlet Laplacian with uniform magnetic field on a curved strip in two dimensions. We give a sufficient condition on the width and the curvature of the strip ensuring the existence of the discrete spectrum in the strong magnetic field limit, answering (negatively) a conjecture made by Duclos and Exner.
We construct families of translationally invariant, nearest-neighbour Hamiltonians on a 2D square lattice of d-level quantum systems (d constant), for which determining whether the system is gapped or gapless is an undecidable problem. This is true even with the promise that each Hamiltonian is either gapped or gapless in the strongest sense: it is promised to either have continuous spectrum above the ground state in the thermodynamic limit, or its spectral gap is lower-bounded by a constant. Moreover, this constant can be taken equal to the operator norm of the local operator that generates the Hamiltonian (the local interaction strength). The result still holds true if one restricts to arbitrarily small quantum perturbations of classical Hamiltonians. The proof combines a robustness analysis of Robinson’s aperiodic tiling, together with tools from quantum information theory: the quantum phase estimation algorithm and the history state technique mapping Quantum Turing Machines to Hamiltonians.
We compute the deficiency spaces of operators of the form $H_A{\hat {\otimes }} I + I{\hat {\otimes }} H_B$, for symmetric $H_A$ and self-adjoint $H_B$. This enables us to construct self-adjoint extensions (if they exist) by means of von Neumann's theory. The structure of the deficiency spaces for this case was asserted already in Ibort et al. [Boundary dynamics driven entanglement, J. Phys. A: Math. Theor.47(38) (2014) 385301], but only proven under the restriction of $H_B$ having discrete, non-degenerate spectrum.
We consider continuous cocycles arising from CMV and Jacobi matrices. Assuming that the Verblunsky and Jacobi coefficients arise from generalized skew-shifts, we prove that uniform hyperbolicity of the associated cocycles is
$C^0$
-dense. This implies that the associated CMV and Jacobi matrices have a Cantor spectrum for a generic continuous sampling map.
We consider a system of N bosons in the mean-field scaling regime for a class of interactions including the repulsive Coulomb potential. We derive an asymptotic expansion of the low-energy eigenstates and the corresponding energies, which provides corrections to Bogoliubov theory to any order in $1/N$.
This paper is devoted to dimensional reductions via the norm-resolvent convergence. We derive explicit bounds on the resolvent difference as well as spectral asymptotics. The efficiency of our abstract tool is demonstrated by its application on seemingly different partial differential equation problems from various areas of mathematical physics; all are analysed in a unified manner, known results are recovered and new ones established.
We study the distribution of the discrete spectrumof the Schrödinger operator perturbed by a fast oscillating decaying potential depending on a small parameter $h$.
In this paper we perform a numerical study of the spectra, eigenstates, and Lyapunov exponents of the skew-shift counterpart to Harper’s equation. This study is motivated by various conjectures on the spectral theory of these ‘pseudo-random’ models, which are reviewed in detail in the initial sections of the paper. The numerics carried out at different scales are within agreement with the conjectures and show a striking difference compared with the spectral features of the Almost Mathieu model. In particular our numerics establish a small upper bound on the gaps in the spectrum (conjectured to be absent).
A new and elementary proof is given of the recent result of Cuccagna, Pelinovsky, and Vougalter based on the variational principle for the quadratic form of a self-adjoint operator. It is the negative index theorem for a linearized $\text{NLS}$ operator in three dimensions.
In this paper, we consider the quantum version of a Hamiltonian model describing friction. This model consists of a particle which interacts with a bosonic reservoir representing a homogeneous medium through which the particle moves. We show that if the particle is confined, then the Hamiltonian admits a ground state if and only if a suitable infrared condition is satisfied. The latter is violated in the case of linear friction, but satisfied when the friction force is proportional to a higher power of the particle speed.
A family $\mathbf{A}_\alpha$ of differential operators depending on a real parameter $\alpha \ge 0$ is considered. This family was suggested by Smilansky as a model of an irreversible quantum system. We find the absolutely continuous spectrum $\sigma_{a.c.}$ of the operator $\mathbf{A}_\alpha$ and its multiplicity for all values of the parameter. The spectrum of $\mathbf{A}_0$ is purely absolutely continuous and admits an explicit description. It turns out that for $\alpha < \sqrt 2$ one has $\sigma_{a.c.}(\mathbf{A}_\alpha) = \sigma_{a.c.}(\mathbf{A}_0)$, including the multiplicity. For $\alpha \ge \sqrt2$ an additional branch of the absolutely continuous spectrum arises; its source is an auxiliary Jacobi matrix which is related to the operator $\mathbf{A}_\alpha$. This birth of an extra branch of the absolutely continuous spectrum is the exact mathematical expression of the effect that was interpreted by Smilansky as irreversibility.
In the framework of quantum probability, we present a simple geometrical mechanism which gives rise to binomial distributions, Gaussian distributions, Poisson distributions, and their interrelation. More specifically, by virtue of coherent states and a toy analogue of the Bargmann transform, we calculate the probability distributions of the position observable and the Hamiltonian arising in the representation of the classic group SU(2). This representation may be viewed as a constrained harmonic oscillator with a two-dimensional sphere as the phase space. It turns out that both the position observable and the Hamiltonian have binomial distributions, but with different asymptotic behaviours: with large radius and high spin limit, the former tends to the Gaussian while the latter tends to the Poisson.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.