We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this paper, we introduce the notion of planar two-center Stark–Zeeman systems and define four
$J^{+}$
-like invariants for their periodic orbits. The construction is based on a previous construction for a planar one-center Stark–Zeeman system in [K. Cieliebak, U. Frauenfelder and O. van Koert. Periodic orbits in the restricted three-body problem and Arnold’s
$J^+$
-invariant. Regul. Chaotic Dyn.22(4) (2017), 408–434] as well as Levi-Civita and Birkhoff regularizations. We analyze the relationship among these invariants and show that they are largely independent, based on a new construction called interior connected sum.
We present a generalization of Moser’s theorem on the regularization of Keplerian systems that include positive and negative energies. Our approach does not consider the geodesics of the hyperboloid embedded in a Lorentz space for the unbounded orbits, as it is previously done in the literature. Instead, we connect the Keplerian positive and negative energy orbits with the harmonic oscillator with negative and positive frequencies. The connection is established through the canonical extension of the stereographic projection, as it is done in Moser’s original paper. How we base our study reveals that Kustaanheimo–Stiefel map KS and Moser regularizations are alternative ways of showing the spatial Kepler system as a subdynamics of the 4D harmonic oscillator.
We classify and analyze the orbits of the Kepler problem on surfaces of constant curvature (both positive and negative, ${{\mathbb{S}}^{2}}$ and ${{\mathbb{H}}^{2}}$, respectively) as functions of the angular momentum and the energy. Hill's regions are characterized, and the problem of time-collision is studied. We also regularize the problem in Cartesian and intrinsic coordinates, depending on the constant angular momentum, and we describe the orbits of the regularized vector field. The phase portraits both for ${{\mathbb{S}}^{2}}$ and ${{\mathbb{H}}^{2}}$ are pointed out.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.