We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let ${\mathcal {D}}$ and $T$ be, respectively, a $C^1$ distribution of $k$-planes and a normal $k$-current on ${\mathbb {R}}^n$. Then ${\mathcal {D}}$ has to be involutive at almost every superdensity point of the tangency set of $T$ with respect to ${\mathcal {D}}$.
We propose a new, constructive theory of moving frames for Lie pseudo-group actions on submanifolds. The moving frame provides an effective means for determining complete systems of differential invariants and invariant differential forms, classifying their syzygies and recurrence relations, and solving equivalence and symmetry problems arising in a broad range of applications.
We discuss the Monge problem for under-determined systems of ordinary differential equations with an arbitrary degree of freedom and give a sufficient condition, in terms of truncated multi-flag systems, for the Monge property to hold. This condition extends in a natural way the Cartan criterion valid for systems with one degree of freedom.
Travelling wave solutions to the vortex filament flow generated by elastica produce surfaces in ${{\mathbb{R}}^{3}}$ that carry mutually orthogonal foliations by geodesics and by helices. These surfaces are classified in the special cases where the helices are all congruent or are all generated by a single screw motion. The first case yields a new characterization for the Bäcklund transformation for constant torsion curves in ${{\mathbb{R}}^{3}}$, previously derived fromthe well-known transformation for pseudospherical surfaces. A similar investigation for surfaces in ${{H}^{3}}$ or ${{S}^{3}}$ leads to a new transformation for constant torsion curves in those spaces that is also derived from pseudospherical surfaces.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.