We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Given a Hamiltonian action of a proper symplectic groupoid (for instance, a Hamiltonian action of a compact Lie group), we show that the transverse momentum map admits a natural constant rank stratification. To this end, we construct a refinement of the canonical stratification associated to the Lie groupoid action (the orbit type stratification, in the case of a Hamiltonian Lie group action) that seems not to have appeared before, even in the literature on Hamiltonian Lie group actions. This refinement turns out to be compatible with the Poisson geometry of the Hamiltonian action: it is a Poisson stratification of the orbit space, each stratum of which is a regular Poisson manifold that admits a natural proper symplectic groupoid integrating it. The main tools in our proofs (which we believe could be of independent interest) are a version of the Marle–Guillemin–Sternberg normal form theorem for Hamiltonian actions of proper symplectic groupoids and a notion of equivalence between Hamiltonian actions of symplectic groupoids, closely related to Morita equivalence between symplectic groupoids.
We formulate a theory of pointed manifolds, accommodating both embeddings and Pontryagin–Thom collapse maps, so as to present a common generalization of Poincaré duality in topology and Koszul duality in ${\mathcal{E}}_{n}$-algebra.
We show that if the family $\mathcal{O}$ of orbits of all vector fields on a subcartesian space $P$ is locally finite and each orbit in $\mathcal{O}$ is locally closed, then $\mathcal{O}$ defines a smooth Whitney A stratification of $P$. We also show that the stratification by orbit type of the space of orbits $M/G$ of a proper action of a Lie group $G$ on a smooth manifold $M$ is given by orbits of the family of all vector fields on $M/G$.
In this paper we prove a realizability theorem for Quinn’s mapping cylinder obstructions for stratified spaces. We prove a continuously controlled version of the s-cobordism theorem which we further use to prove the relation between the torsion of an h-cobordism and the mapping cylinder obstructions. This states that the image of the torsion of an h-cobordism is the mapping cylinder obstruction of the lower stratum of one end of the h-cobordism in the top filtration. These results are further used to prove a theorem about the realizability of end obstructions.
In this paper, we present a smooth framework for some aspects of the “geometry of CW complexes”, in the sense of Buoncristiano, Rourke and Sanderson. We then apply these ideas to Morse theory, in order to generalize results of Franks and Iriye-Kono.
More precisely, consider a Morse function $f$ on a closed manifold $M$. We investigate the relations between the attaching maps in a $\text{CW}$ complex determined by $f$, and the moduli spaces of gradient flow lines of $f$, with respect to some Riemannian metric on $M$.
By blending techniques from set theory and algebraic topology we investigate the order of any homeomorphism of the nth power of the long ray or long line L having finite order, finding all possible orders when n = 1, 2, 3 or 4 in the first case and when n = 1 or 2 in the second. We also show that all finite powers of L are acyclic with respect to Alexander-Spanier cohomology.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.