A unital C*-algebra $A$ is said to have cancellation of projections if the semigroup $D(A)$ of Murray–von Neumann equivalence classes of projections in matrices over $A$ is cancellative. It has long been known that stable rank one implies cancellation for any $A$, and some partial converses have been established. In this paper it is proved that cancellation does not imply stable rank one for simple, stably finite C*-algebras.