We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We investigate strongly continuous one-parameter (C0) groups of isometries acting on certain spaces of analytical functions which were introduced by Kolaski (C. J. Kolaski, Isometries of some smooth normed spaces of analytic functions, Complex Var. Theory Appl. 10(2–3) (1988), 115–122). We characterize the generators of these groups of isometries and also the spectrum of the generators. We provide an example on the Bloch space of an unbounded hermitian operator with non-compact resolvent.
In the sequel we construct simple, unital, separable, stable, amenable ${{C}^{*}}$-algebras for which the ordered ${{K}_{0}}$-group is strongly perforated and group isomorphic to $Z$. The particular order structures to be constructed will be described in detail below, and all known results of this type will be generalised.
A Banach space satisfying some physically significant geometric properties is shown to be the predual of a JBW*–triple. If one considers the unit ball of this Banach space as the state space of a physical system, the result shows that the set of observables is equipped with a natural ternary algebraic structure. This provides a spectral theory and other tools for studying the quantum mechanical measuring process
A norm |⋅| on a Banach space X is locally uniformly rotund (LUR) if lim |xn — x| = 0 for every xn, x ∈ X for which lim2|x|2 + 2 |xn|2-|xn+xn|2 = 0. It is shown that a Banach space X admits an equivalent LUR norm provided there is a bounded linear operator T of X into c0(Γ) such that T* c*0(Γ) is norm dense in X*. This is the case e.g. if X* is weakly compactly generated (WCG).
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.