We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We study the real-valued modified KdV equation on the real line and the circle in both the focusing and the defocusing cases. By employing the method of commuting flows introduced by Killip and Vişan (2019), we prove global well-posedness in Hs for $0\leq s \lt \tfrac{1}{2}$. On the line, we show how the arguments in the recent article by Harrop-Griffiths, Killip, and Vişan (2020) may be simplified in the higher regularity regime $s\geq 0$. On the circle, we provide an alternative proof of the sharp global well-posedness in L2 due to Kappeler and Topalov (2005) and also extend this to the large-data focusing case.
We study Gibbs measures with log-correlated base Gaussian fields on the d-dimensional torus. In the defocusing case, the construction of such Gibbs measures follows from Nelson’s argument. In this paper, we consider the focusing case with a quartic interaction. Using the variational formulation, we prove nonnormalizability of the Gibbs measure. When $d = 2$, our argument provides an alternative proof of the nonnormalizability result for the focusing $\Phi ^4_2$-measure by Brydges and Slade (1996). Furthermore, we provide a precise rate of divergence, where the constant is characterized by the optimal constant for a certain Bernstein’s inequality on $\mathbb R^d$. We also go over the construction of the focusing Gibbs measure with a cubic interaction. In the appendices, we present (a) nonnormalizability of the Gibbs measure for the two-dimensional Zakharov system and (b) the construction of focusing quartic Gibbs measures with smoother base Gaussian measures, showing a critical nature of the log-correlated Gibbs measure with a focusing quartic interaction.
We prove that the cubic nonlinear Schrödinger equation (both focusing and defocusing) is globally well-posed in $H^s({{\mathbb {R}}})$ for any regularity $s>-\frac 12$. Well-posedness has long been known for $s\geq 0$, see [55], but not previously for any $s<0$. The scaling-critical value $s=-\frac 12$ is necessarily excluded here, since instantaneous norm inflation is known to occur [11, 40, 48].
We also prove (in a parallel fashion) well-posedness of the real- and complex-valued modified Korteweg–de Vries equations in $H^s({{\mathbb {R}}})$ for any $s>-\frac 12$. The best regularity achieved previously was $s\geq \tfrac 14$ (see [15, 24, 33, 39]).
To overcome the failure of uniform continuity of the data-to-solution map, we employ the method of commuting flows introduced in [37]. In stark contrast with our arguments in [37], an essential ingredient in this paper is the demonstration of a local smoothing effect for both equations. Despite the nonperturbative nature of the well-posedness, the gain of derivatives matches that of the underlying linear equation. To compensate for the local nature of the smoothing estimates, we also demonstrate tightness of orbits. The proofs of both local smoothing and tightness rely on our discovery of a new one-parameter family of coercive microscopic conservation laws that remain meaningful at this low regularity.
Results of stabilization for the higher order of the Kadomtsev-Petviashvili equation are presented in this manuscript. Precisely, we prove with two different approaches that under the presence of a damping mechanism and an internal delay term (anti-damping) the solutions of the Kawahara–Kadomtsev–Petviashvili equation are locally and globally exponentially stable. The main novelty of this work is that we present the optimal constant, as well as the minimal time, that ensures that the energy associated with this system goes to zero exponentially.
For a perturbed generalized Korteweg–de Vries equation with a distributed delay, we prove the existence of both periodic and solitary waves by using the geometric singular perturbation theory and the Melnikov method. We further obtain monotonicity and boundedness of the speed of the periodic wave with respect to the total energy of the unperturbed system. Finally, we establish a relation between the wave speed and the wavelength.
The long-time behaviour of solutions to the defocussing modified Korteweg-de Vries (MKdV) equation is established for initial conditions in some weighted Sobolev spaces. Our approach is based on the nonlinear steepest descent method of Deift and Zhou and its reformulation by Dieng and McLaughlin through
$\overline {\partial }$
-derivatives. To extend the asymptotics to solutions with initial data in lower-regularity spaces, we apply a global approximation via PDE techniques.
In this paper, we prove several results on the exponential decay in $L^{2}$ norm of the KdV equation on the real line with localized dampings. First, for the linear KdV equation, the exponential decay holds if and only if the averages of the damping coefficient on all intervals of a fixed length have a positive lower bound. Moreover, under the same damping condition, the exponential decay holds for the (nonlinear) KdV equation with small initial data. Finally, with the aid of certain properties of propagation of regularity in Bourgain spaces for solutions of the associated linear system and the unique continuation property, the exponential decay for the KdV equation with large data holds if the damping coefficient has a positive lower bound on $E$, where $E$ is equidistributed over the real line and the complement $E^{c}$ has a finite Lebesgue measure.
We introduce a numerical framework for dispersive equations embedding their underlying resonance structure into the discretisation. This will allow us to resolve the nonlinear oscillations of the partial differential equation (PDE) and to approximate with high-order accuracy a large class of equations under lower regularity assumptions than classical techniques require. The key idea to control the nonlinear frequency interactions in the system up to arbitrary high order thereby lies in a tailored decorated tree formalism. Our algebraic structures are close to the ones developed for singular stochastic PDEs (SPDEs) with regularity structures. We adapt them to the context of dispersive PDEs by using a novel class of decorations which encode the dominant frequencies. The structure proposed in this article is new and gives a variant of the Butcher–Connes–Kreimer Hopf algebra on decorated trees. We observe a similar Birkhoff type factorisation as in SPDEs and perturbative quantum field theory. This factorisation allows us to single out oscillations and to optimise the local error by mapping it to the particular regularity of the solution. This use of the Birkhoff factorisation seems new in comparison to the literature. The field of singular SPDEs took advantage of numerical methods and renormalisation in perturbative quantum field theory by extending their structures via the adjunction of decorations and Taylor expansions. Now, through this work, numerical analysis is taking advantage of these extended structures and provides a new perspective on them.
The purpose of this paper is to present an extension of the results in [8]. We establish a more general proof for the moving kernel formula to prove the spectral stability of periodic traveling wave solutions for the regularized Benjamin–Bona–Mahony type equations. As applications of our analysis, we show the spectral instability for the quintic Benjamin–Bona–Mahony equation and the spectral (orbital) stability for the regularized Benjamin–Ono equation.
We investigate, both analytically and numerically, dispersive fractalisation and quantisation of solutions to periodic linear and nonlinear Fermi–Pasta–Ulam–Tsingou systems. When subject to periodic boundary conditions and discontinuous initial conditions, e.g., a step function, both the linearised and nonlinear continuum models for FPUT exhibit fractal solution profiles at irrational times (as determined by the coefficients and the length of the interval) and quantised profiles (piecewise constant or perturbations thereof) at rational times. We observe a similar effect in the linearised FPUT chain at times t where these models have validity, namely t = O(h−2), where h is proportional to the intermass spacing or, equivalently, the reciprocal of the number of masses. For nonlinear periodic FPUT systems, our numerical results suggest a somewhat similar behaviour in the presence of small nonlinearities, which disappears as the nonlinear force increases in magnitude. However, these phenomena are manifested on very long time intervals, posing a severe challenge for numerical integration as the number of masses increases. Even with the high-order splitting methods used here, our numerical investigations are limited to nonlinear FPUT chains with a smaller number of masses than would be needed to resolve this question unambiguously.
We analyze stability of conservative solutions of the Cauchy problem on the line for the Camassa–Holm (CH) equation. Generically, the solutions of the CH equation develop singularities with steep gradients while preserving continuity of the solution itself. In order to obtain uniqueness, one is required to augment the equation itself by a measure that represents the associated energy, and the breakdown of the solution is associated with a complicated interplay where the measure becomes singular. The main result in this paper is the construction of a Lipschitz metric that compares two solutions of the CH equation with the respective initial data. The Lipschitz metric is based on the use of the Wasserstein metric.
We prove the existence of multi-soliton and kink-multi-soliton solutions of the Euler–Korteweg system in dimension one. Such solutions behave asymptotically in time like several travelling waves far away from each other. A kink is a travelling wave with different limits at ±∞. The main assumption is the linear stability of the solitons, and we prove that this assumption is satisfied at least in the transonic limit. The proof relies on a classical approach based on energy estimates and a compactness argument.
We prove the existence of the global attractor in ${\dot{H}}^{s}$, $s>11/12$ for the weakly damped and forced mKdV on the one-dimensional torus. The existence of global attractor below the energy space has not been known, though the global well-posedness below the energy space has been established. We directly apply the $I$-method to the damped and forced mKdV, because the Miura transformation does not work for the mKdV with damping and forcing terms. We need to make a close investigation into the trilinear estimates involving resonant frequencies, which are different from the bilinear estimates corresponding to the KdV.
We are interested in the Korteweg–de Vries (KdV), Burgers and Whitham limits for a spatially periodic Boussinesq model with non-small contrast. We prove estimates of the relations between the KdV, Burgers and Whitham approximations and the true solutions of the original system that guarantee these amplitude equations make correct predictions about the dynamics of the spatially periodic Boussinesq model over their natural timescales. The proof is based on Bloch wave analysis and energy estimates and is the first justification result of the KdV, Burgers and Whitham approximations for a dispersive partial differential equation posed in a spatially periodic medium of non-small contrast.
In this paper we are concerned with the well-posedness and the exponential stabilization of the generalized Korteweg–de Vries–Burgers equation, posed on the whole real line, under the effect of a damping term. Both problems are investigated when the exponent p in the nonlinear term ranges over the interval [1, 5). We first prove the global well-posedness in Hs(ℝ) for 0 ≤ s ≤ 3 and 1 ≤ p < 2, and in H3(ℝ) when p ≥ 2. For 2 ≤ p < 5, we prove the existence of global solutions in the L2-setting. Then, by using multiplier techniques and interpolation theory, the exponential stabilization is obtained with an indefinite damping term and 1 ≤ p < 2. Under the effect of a localized damping term the result is obtained when 2 ≤ p < 5. Combining multiplier techniques and compactness arguments, we show that the problem of exponential decay is reduced to proving the unique continuation property of weak solutions. Here, the unique continuation is obtained via the usual Carleman estimate.
Dynamical system theory is applied to the integrable nonlinear wave equation ut±(u3–u2)x+(u3)xxx=0. We obtain the single peak solitary wave solutions and compacton solutions of the equation. Regular compacton solution of the equation correspond to the case of wave speed c=0. In the case of c≠0, we find smooth soliton solutions. The influence of parameters of the traveling wave solutions is explored by using the phase portrait analytical technique. Asymptotic analysis and numerical simulations are provided for these soliton solutions of the nonlinear wave equation.
In this paper, the idea of a combination of variable separation approach and the extended homoclinic test approach is proposed to seek non-travelling wave solutions of Calogero equation. The equation is reduced to some (1+1)-dimensional nonlinear equations by applying the variable separation approach and solves reduced equations with the extended homoclinic test technique. Based on this idea and with the aid of symbolic computation, some new explicit solutions can be obtained.
We construct and analyze conservative local discontinuous Galerkin (LDG) methods for the Generalized Korteweg-de-Vries equation. LDG methods are designed by writing the equation as a system and performing separate approximations to the spatial derivatives. The main focus is on the development of conservative methods which can preserve discrete versions of the first two invariants of the continuous solution, and a posteriori error estimates for a fully discrete approximation that is based on the idea of dispersive reconstruction. Numerical experiments are provided to verify the theoretical estimates.
Integrable couplings of the Boiti-Pempinelli-Tu hierarchy are constructed by a class of non-semisimple block matrix loop algebras. Further, through using the variational identity theory, the Hamiltonian structures of those integrable couplings are obtained. The method can be applied to obtain other integrable hierarchies.
The purpose of this paper is to develop and test novel invariant-preserving finite difference schemes for both the Camassa-Holm (CH) equation and one of its 2-component generalizations (2CH). The considered PDEs are strongly nonlinear, admitting soliton-like peakon solutions which are characterized by a slope discontinuity at the peak in the wave shape, and therefore suitable for modeling both short wave breaking and long wave propagation phenomena. The proposed numerical schemes are shown to preserve two invariants, momentum and energy, hence numerically producing wave solutions with smaller phase error over a long time period than those generated by other conventional methods. We first apply the scheme to the CH equation and showcase the merits of considering such a scheme under a wide class of initial data. We then generalize this scheme to the 2CH equation and test this scheme under several types of initial data.