We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Starting from loop equations, we prove that the wave functions constructed from topological recursion on families of degree $2$ spectral curves with a global involution satisfy a system of partial differential equations, whose equations can be seen as quantizations of the original spectral curves. The families of spectral curves can be parametrized with the so-called times, defined as periods on second type cycles, and with the poles. These equations can be used to prove that the WKB solution of many isomonodromic systems coincides with the topological recursion wave function, which proves that the topological recursion wave function is annihilated by a quantum curve. This recovers many known quantum curves for genus zero spectral curves and generalizes this construction to hyperelliptic curves.
The singularly perturbed Riccati equation is the first-order nonlinear ordinary differential equation
$\hbar \partial _x f = af^2 + bf + c$
in the complex domain where
$\hbar $
is a small complex parameter. We prove an existence and uniqueness theorem for exact solutions with prescribed asymptotics as
$\hbar \to 0$
in a half-plane. These exact solutions are constructed using the Borel–Laplace method; that is, they are Borel summations of the formal divergent
$\hbar $
-power series solutions. As an application, we prove existence and uniqueness of exact WKB solutions for the complex one-dimensional Schrödinger equation with a rational potential.
Linear second order differential equations of the form d2w/dz2 − {u2f(u, z) + g(z)}w = 0 are studied, where |u| → ∞ and z lies in a complex bounded or unbounded domain D. If f(u, z) and g(z) are meromorphic in D, and f(u, z) has no zeros, the classical Liouville-Green/WKBJ approximation provides asymptotic expansions involving the exponential function. The coefficients in these expansions either multiply the exponential or in an alternative form appear in the exponent. The latter case has applications to the simplification of turning point expansions as well as certain quantum mechanics problems, and new computable error bounds are derived. It is shown how these bounds can be sharpened to provide realistic error estimates, and this is illustrated by an application to modified Bessel functions of complex argument and large positive order. Explicit computable error bounds are also derived for asymptotic expansions for particular solutions of the nonhomogeneous equations of the form d2w/dz2 − {u2f(z) + g(z)}w = p(z).
Applications of a WKBJ-type ‘ray ansatz’ to obtain asymptotic solutions of the Helmholtz equation in the high-frequency limit are now standard and underpin the construction of ‘geometrical optics’ ray diagrams in many electromagnetic, acoustic and elastic reflection, transmission and other scattering problems. These applications were subsequently extended by Keller to include other types of rays – called ‘diffracted’ rays – to provide an accessible and impressively accurate theory which is relevant in wide-ranging sets of circumstances. Friedlander and Keller then introduced a modified ray ansatz to extend yet further the scope of ray theory and its applicability to certain other classes of diffraction problems (tangential ray incidence upon an obstructing boundary, for instance) and did so by the inclusion of an extra term proportional to a power of the wave number within the exponent of the initial ansatz. Our purpose here is to generalise this further still by the inclusion of several such terms, ordered in a natural sequence in terms of strategically chosen fractional powers of the large wave number, and to derive a systematic sequence of boundary value problems for the coefficient phase functions that arise within this generalised exponent, as well as one for the leading-order amplitude occurring as a pre-exponential factor. One particular choice of fractional power is considered in detail, and waves with specified radially symmetric or planar wavefronts are then analysed, along with a boundary value problem typifying two-dimensional radiation whereby arbitrary phase and amplitude variations are specified on a prescribed boundary curve. This theory is then applied to the scattering of plane and cylindrical waves at curved boundaries with small-scale perturbations to their underlying profile.
We consider an optimal control problem with an 1D singularly perturbed differential state equation. For solving such problems one uses the enhanced system of the state equation and its adjoint form. Thus, we obtain a system of two convection-diffusion equations. Using linear finite elements on adapted grids we treat the effects of two layers arising at different boundaries of the domain. We proof uniform error estimates for this method on meshes of Shishkin type. We present numerical results supporting our analysis.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.