We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
It was proven by Bullet and Lomonaco [Mating quadratic maps with the modular group II. Invent. Math.220(1) (2020), 185–210] that $\mathcal {F}_a$ is a mating between the modular group $\operatorname {PSL}_2(\mathbb {Z})$ and a quadratic rational map. We show for every $a\in \mathcal {K}$, the iterated images and preimages under $\mathcal {F}_a$ of non-exceptional points equidistribute, in spite of the fact that $\mathcal {F}_a$ is weakly modular in the sense of Dinh, Kaufmann, and Wu [Dynamics of holomorphic correspondences on Riemann surfaces. Int. J. Math.31(05) (2020), 2050036], but it is not modular. Furthermore, we prove that periodic points equidistribute as well.
We present some fundamental properties of quasi-Reinhardt domains, in connection with Kobayashi hyperbolicity, minimal domains and representative domains. We also study proper holomorphic correspondences between quasi-Reinhardt domains.
Let M be a circular CR manifold and let N be a rigid CR manifold in some complex vector spaces. The problem of the existence of local CR mappings from M into N is considered. Conditions are given which ensure that the space of such CR mappings depends on a finite number of parameters. The idea of the proof of the main result relies on a Bishop type equation for CR mappings. Roughly speaking, we look for CR mappings from M into N in the form F = (ƒ,g), we assume that g is given, then we find ƒ in terms of g and some parameters, and finally we look for conditions on g. It works independently of assumptions on the Levi forms of M and N, and there is also some freedom on the codimension of the manifolds.
Let F be a bounded holomorphic mapping defined on a bounded homogeneous domain in ℂN. We study the relation between the Jacobian JF(z) and the radius dF(z) of uni valence of F.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.