We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
A nontrivial element of a group is a generalized torsion element if some products of its conjugates is the identity. The minimum number of such conjugates is called a generalized torsion order. We provide several restrictions for generalized torsion orders by using the Alexander polynomial.
Let ${\mathcal G}$ be a linear algebraic group over k, where k is an algebraically closed field, a pseudo-finite field or the valuation ring of a non-archimedean local field. Let $G= {\mathcal G}(k)$. We prove that if $\gamma\in G$ such that γ is a commutator and $\delta\in G$ such that $\langle \delta\rangle= \langle \gamma\rangle$ then δ is a commutator. This generalises a result of Honda for finite groups. Our proof uses the Lefschetz principle from first-order model theory.
The automorphism group $\operatorname {Aut}(F_n)$ of the free group $F_n$ acts on a space $A_d(n)$ of Jacobi diagrams of degree d on n oriented arcs. We study the $\operatorname {Aut}(F_n)$-module structure of $A_d(n)$ by using two actions on the associated graded vector space of $A_d(n)$: an action of the general linear group $\operatorname {GL}(n,\mathbb {Z})$ and an action of the graded Lie algebra $\mathrm {gr}(\operatorname {IA}(n))$ of the IA-automorphism group $\operatorname {IA}(n)$ of $F_n$ associated with its lower central series. We extend the action of $\mathrm {gr}(\operatorname {IA}(n))$ to an action of the associated graded Lie algebra of the Andreadakis filtration of the endomorphism monoid of $F_n$. By using this action, we study the $\operatorname {Aut}(F_n)$-module structure of $A_d(n)$. We obtain an indecomposable decomposition of $A_d(n)$ as $\operatorname {Aut}(F_n)$-modules for $n\geq 2d$. Moreover, we obtain the radical filtration of $A_d(n)$ for $n\geq 2d$ and the socle of $A_3(n)$.
In this paper, we consider the $T$- and $V$-versions, ${T_\tau }$ and ${V_\tau }$, of the irrational slope Thompson group ${F_\tau }$ considered in J. Burillo, B. Nucinkis and L. Reeves [An irrational-slope Thompson's group, Publ. Mat. 65 (2021), 809–839]. We give infinite presentations for these groups and show how they can be represented by tree-pair diagrams similar to those for $T$ and $V$. We also show that ${T_\tau }$ and ${V_\tau }$ have index-$2$ normal subgroups, unlike their original Thompson counterparts $T$ and $V$. These index-$2$ subgroups are shown to be simple.
Given groups $A$ and $B$, what is the minimal commutator length of the 2020th (for instance) power of an element $g\in A*B$ not conjugate to elements of the free factors? The exhaustive answer to this question is still unknown, but we can give an almost answer: this minimum is one of two numbers (simply depending on $A$ and $B$). Other similar problems are also considered.
The problem of finding the number of ordered commuting tuples of elements in a finite group is equivalent to finding the size of the solution set of the system of equations determined by the commutator relations that impose commutativity among any pair of elements from an ordered tuple. We consider this type of systems for the case of ordered triples and express the size of the solution set in terms of the irreducible characters of the group. The obtained formulas are natural extensions of Frobenius’ character formula that calculates the number of ways a group element is a commutator of an ordered pair of elements in a finite group. We discuss how our formulas can be used to study the probability distributions afforded by these systems of equations, and we show explicit calculations for dihedral groups.
We show that if w is a multilinear commutator word and G a finite group in which every metanilpotent subgroup generated by w-values is of rank at most r, then the rank of the verbal subgroup
$w(G)$
is bounded in terms of r and w only. In the case where G is soluble, we obtain a better result: if G is a finite soluble group in which every nilpotent subgroup generated by w-values is of rank at most r, then the rank of
$w(G)$
is at most
$r+1$
.
Let γn = [x1,…,xn] be the nth lower central word. Denote by Xn the set of γn -values in a group G and suppose that there is a number m such that $|{g^{{X_n}}}| \le m$ for each g ∈ G. We prove that γn+1(G) has finite (m, n) -bounded order. This generalizes the much-celebrated theorem of B. H. Neumann that says that the commutator subgroup of a BFC-group is finite.
A group G has restricted centralizers if for each g in G the centralizer $C_G(g)$ either is finite or has finite index in G. A theorem of Shalev states that a profinite group with restricted centralizers is abelian-by-finite. In the present paper we handle profinite groups with restricted centralizers of word-values. We show that if w is a multilinear commutator word and G a profinite group with restricted centralizers of w-values, then the verbal subgroup w(G) is abelian-by-finite.
A group G satisfies the second Engel condition [X,Y,Y ]=1 if and only if x commutes with xy, for all x,y∈G. This paper considers the generalization of this condition to groups G such that, for fixed positive integers r and s, xr commutes with (xs)y for all x,y∈G. Various general bounds are proved for the structure of groups in the corresponding variety, defined by the law [Xr,(Xs)Y]=1.
In this paper we construct new obstructions for the surjectivity of the Johnson homomorphism of the automorphism group of a free group. We also determine the structure of the cokernel of the Johnson homomorphism for degrees 2 and 3.
The aim of this work is to offer a new characterization of the Hilbert symbol Q*p from the commutator of a certain central extension of groups. We obtain a characterization for Q*p (p≠2) and a different one for Q*2.
A well-known theorem of P. Hall says that if a group $G$ contains a normal nilpotent subgroup $N$ such that $G/N'$ is nilpotent then $G$ is nilpotent. We give a similar sufficient condition for a group $G$ to be an extension of a group of finite exponent by a nilpotent group.Supported by CNPq-Brazil.