We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We give a complete description of quadratic twisted potential algebras on three generators as well as cubic twisted potential algebras on two generators up to graded algebra isomorphisms under the assumption that the ground field is algebraically closed and has characteristic other than 2 or 3.
We investigate connections between the associated Lie ring and the adjoint group of a radical ring, studying their upper central chains. Part of a conjecture of S. A. Jennings is proved, and one of our results improves a theorem of his.
Let R be a ring with 1 whose nil subrings are nilpotent modulo the sum of nilpotent ideals. It is proved that if G is a locally solvable group of unipotent elements in R, then the subring generated by {g −1 g ∈ G} is nil. This result implies a result of Sizer showing that a solvable group of unipotent matrices over a skew field can be simultaneously triangularized.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.