We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We solve the problem of factoring polynomials
$V_n(x) \pm 1$
and
$W_n(x) \pm 1$
, where
$V_n(x)$
and
$W_n(x)$
are Chebyshev polynomials of the third and fourth kinds, in terms of the minimal polynomials of
$\cos ({2\pi }{/d})$
. The method of proof is based on earlier work, D. A. Wolfram, [‘Factoring variants of Chebyshev polynomials of the first and second kinds with minimal polynomials of
$\cos ({2 \pi }/{d})$
’, Amer. Math. Monthly129 (2022), 172–176] for factoring variants of Chebyshev polynomials of the first and second kinds. We extend this to show that, in general, similar variants of Chebyshev polynomials of the fifth and sixth kinds,
$X_n(x) \pm 1$
and
$Y_n(x) \pm 1$
, do not have factors that are minimal polynomials of
$\cos ({2\pi }/{d})$
.
For
$c \in \mathbb {Q}$
, consider the quadratic polynomial map
$\varphi _c(z)=z^2-c$
. Flynn, Poonen, and Schaefer conjectured in 1997 that no rational cycle of
$\varphi _c$
under iteration has length more than
$3$
. Here, we discuss this conjecture using arithmetic and combinatorial means, leading to three main results. First, we show that if
$\varphi _c$
admits a rational cycle of length
$n \ge 3$
, then the denominator of c must be divisible by
$16$
. We then provide an upper bound on the number of periodic rational points of
$\varphi _c$
in terms of the number s of distinct prime factors of the denominator of c. Finally, we show that the Flynn–Poonen–Schaefer conjecture holds for
$\varphi _c$
if
$s \le 2$
, i.e., if the denominator of c has at most two distinct prime factors.
It is proven that, for a wide range of integers s (2 < s < p − 2), the existence of a single wildly ramified odd prime l ≠ p leads to either the alternating group or the full symmetric group as Galois group of any irreducible trinomial Xp + aXs + b of prime degree p.
The probability of successfully spending twice the same bitcoins is considered. A double-spending attack consists in issuing two transactions transferring the same bitcoins. The first transaction, from the fraudster to a merchant, is included in a block of the public chain. The second transaction, from the fraudster to himself, is recorded in a block that integrates a private chain, exact copy of the public chain up to substituting the fraudster-to-merchant transaction by the fraudster-to-fraudster transaction. The double-spending hack is completed once the private chain reaches the length of the public chain, in which case it replaces it. The growth of both chains are modelled by two independent counting processes. The probability distribution of the time at which the malicious chain catches up with the honest chain, or, equivalently, the time at which the two counting processes meet each other, is studied. The merchant is supposed to await the discovery of a given number of blocks after the one containing the transaction before delivering the goods. This grants a head start to the honest chain in the race against the dishonest chain.
We give an explicit formula for the resultant of Chebyshev polynomials of the first, second, third, and fourth kinds. We also compute the resultant of modified cyclotomic polynomials.
A univariate polynomial f over a field is decomposable if it is the composition f = g ○ h of two polynomials g and h whose degree is at least 2. We determine an approximation to the number of decomposables over a finite field. The tame case, where the field characteristic p does not divide the degree n of f, is reasonably well understood, and we obtain exponentially decreasing relative error bounds. The wild case, where p divides n, is more challenging and our error bounds are weaker.
In this paper we solve the equation f(g(x))=f(x)hm(x) where f(x), g(x) and h(x) are unknown polynomials with coefficients in an arbitrary field K, f(x) is nonconstant and separable, deg g≥2, the polynomial g(x) has nonzero derivative g′(x)≠0 in K[x] and the integer m≥2 is not divisible by the characteristic of the field K. We prove that this equation has no solutions if deg f≥3 . If deg f=2 , we prove that m=2 and give all solutions explicitly in terms of Chebyshev polynomials. The Diophantine applications for such polynomials f(x) , g(x) , h(x) with coefficients in ℚ or ℤ are considered in the context of the conjecture of Cassaigne et al. on the values of Liouville’s λ function at points f(r) , r∈ℚ.
Let $p$ be a prime greater than or equal to 17 and congruent to 2 modulo 3. We use results of Beukers and Helou on Cauchy–Liouville–Mirimanoff polynomials to show that the intersection of the Fermat curve of degree $p$ with the line $X+Y=Z$ in the projective plane contains no algebraic points of degree $d$ with $3\le d\le 11$. We prove a result on the roots of these polynomials and show that, experimentally, they seem to satisfy the conditions of a mild extension of an irreducibility theorem of Pólya and Szegö. These conditions are conjecturally also necessary for irreducibility.
We introduce a sequence of polynomials which are extensions of the classic Bernoulli polynomials. This generalization is obtained by using the Bessel functions of the first kind. We use these polynomials to evaluate explicitly a general class of series containing an entire function of exponential type.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.