To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We conduct three-dimensional numerical simulations on centrifugal convection (CC) in a closed annular container, incorporating gravity and no-slip top and bottom boundaries, to systematically investigate rotation-induced secondary flow. The Stewartson layer, identified by an elongated circulation in mean vertical velocity plots, emerges near the inner and outer cylinders only beyond a critical gravitational forcing. Quantitative analyses confirm that the layer thickness scales as $\delta _{\,\!\textit{st}}\sim {\textit{Ek}}^{1/3}$ due to rotational effects, consistent with results from rotating Rayleigh–Bénard convection, where $Ek$ represents the Ekman number. The internal circulation strength, however, is determined by both gravitational buoyancy and rotational effects. We propose that gravitational buoyancy drives the internal flow, which balances against viscous forces to establish a terminal velocity. Through theoretical analysis, the vertical velocity amplitude follows $W_{\,\!\textit{st}}\sim {\textit{Ek}}^{5/3}\,Ro^{-1}\,{\textit{Ra}}_g\,Pr^{-1}$, showing good agreement with simulation results across a wide parameter range. Here, $Ro^{-1}$ represents the inverse Rossby number, ${\textit{Ra}}_g$ is the gravitational Rayleigh number, and ${\textit{Pr}}$ is the Prandtl number. The theoretical predictions match simulations well, demonstrating that the Stewartson layer is gravity-induced and rotationally constrained through geostrophic balance in the CC system. These findings yield fundamental insights into turbulent flow structures and heat transfer mechanisms in the CC system, offering both theoretical advances and practical engineering applications.
We investigate the dynamics of a cavitation bubble near rigid surfaces decorated with a single gas-entrapping hole to understand the competition between the attraction of the rigid and the repulsion of the free boundary. The dynamics of laser-induced bubbles near this gas-entrapping hole is studied as a function of the stand-off distance and diameter of the hole. Two kinds of toroidal collapses are observed that are the result of the collision of a wide microjet with the bubble wall. The bubble centroid displacement and the strength of the microjet are compared with the anisotropy parameter $\zeta$, which is derived from a Kelvin impulse analysis. We find that the non-dimensional displacement $\delta$ scales with $\zeta$.
We perform direct numerical simulations of centrifugal convection with an oscillating rotational velocity of small amplitude to study the effects of oscillatory boundary motion. The oscillation period is the main control parameter, with its range corresponding to a Womersley number in the range $1\lt Wo\lt 300$. Oscillating boundaries generate a circumferential shear flow, which significantly inhibits heat transfer, with maximum suppression $87\,\%$ observed in the present parameter space. Through analysis of the background flow, we find that as the oscillation period increases, the increasing penetration depth of the oscillation and weakening local shear strength result in non-monotonic changes in heat transfer. Under high-frequency oscillation, the characteristic length scale of the viscous layer induced by the oscillation is smaller than the convective length scale, and shear manifests primarily as a continuous suppression of the boundary layer. In contrast, under low-frequency oscillation, the shear flow covers the entire region but with weak strength. The suppression effect of such shear flow exhibits periodicity, leading to alternating phases of convection inhibition and convection generation. The present findings explore the physical mechanisms behind the suppression of convective heat transfer by oscillation, and offer a new strategy for controlling convection systems, with potential implications for both fundamental research and industrial applications.
Working memory deficit, a key feature of schizophrenia, is a heritable trait shared with unaffected siblings. It can be attributed to dysregulation in transitions from one brain state to another.
Aims
Using network control theory, we evaluate if defective brain state transitions underlie working memory deficits in schizophrenia.
Method
We examined average and modal controllability of the brain's functional connectome in 161 patients with schizophrenia, 37 unaffected siblings and 96 healthy controls during a two-back task. We use one-way analysis of variance to detect the regions with group differences, and correlated aberrant controllability to task performance and clinical characteristics. Regions affected in both unaffected siblings and patients were selected for gene and functional annotation analysis.
Results
Both average and modal controllability during the two-back task are reduced in patients compared to healthy controls and siblings, indicating a disruption in both proximal and distal state transitions. Among patients, reduced average controllability was prominent in auditory, visual and sensorimotor networks. Reduced modal controllability was prominent in default mode, frontoparietal and salience networks. Lower modal controllability in the affected networks correlated with worse task performance and higher antipsychotic dose in schizophrenia (uncorrected). Both siblings and patients had reduced average controllability in the paracentral lobule and Rolandic operculum. Subsequent out-of-sample gene analysis revealed that these two regions had preferential expression of genes relevant to bioenergetic pathways (calmodulin binding and insulin secretion).
Conclusions
Aberrant control of brain state transitions during task execution marks working memory deficits in patients and their siblings.
The microRNA-200 family plays a key role in inflammatory and vascular processes, making it a relevant target for Kawasaki disease, a vasculitis with coronary complications. This study aimed to evaluate the diagnostic potential of urinary exosomal microRNA-200 family members in Kawasaki disease patients.
Methods:
Urine samples from 15 Kawasaki disease patients and 15 healthy controls underwent total exosome isolation and high-throughput sequencing. Differential expression of microRNA-200 family members was validated using quantitative real-time polymerase chain reaction. Diagnostic potential was assessed via receiver operating characteristic analysis, and correlations with clinical parameters were evaluated using Spearman correlation.
Results:
High-throughput sequencing identified upregulation of microRNA-429, microRNA-200b-3p/5p, microRNA-141-3p, microRNA-200a-3p/5p, and microRNA-200c-3p in Kawasaki disease patients. We confirmed significant upregulation of microRNA-200a-3p/5p, microRNA-200b-3p/5p, and microRNA-429, with receiver operating characteristic analysis showing high diagnostic potential for these microRNAs (area under the curves of 0.844, 0.791, 0.942, 0.842, and 0.898, respectively) and a combined analysis yielding a perfect area under the curve of 1.000. MicroRNA-141 and microRNA-200c-3p/5p, however, showed no significant diagnostic value. MicroRNA-200a-3p and microRNA-200a-5p were positively correlated with white blood cells, platelet counts, and C-reactive protein, while microRNA-200b-3p and microRNA-429 were positively correlated with white blood cells, platelet counts, erythrocyte sedimentation rate, and C-reactive protein. microRNA-200b-5p showed moderate correlations with platelet counts and erythrocyte sedimentation rate.
Conclusion:
Urinary exosomal microRNA-200 family members, especially microRNA-200a-3p/5p, microRNA-200b-3p/5p, and microRNA-429, demonstrate strong diagnostic potential for Kawasaki disease, correlating with key inflammatory markers. MicroRNA-141 and microRNA-200c did not demonstrate significant diagnostic utility.
Psychotic-like experiences (PLEs), especially for persistent PLEs, are highly predictive of subsequent mental health problems. Hence, it is crucial to explore the psychopathological associations underlying the occurrence and persistence of PLEs. This study aimed to explore the above issues through a longitudinal dynamic network approach among PLEs and psychological and psychosocial factors.
Methods
A total of 3,358 college students completed two waves of online survey (from Oct 2021 to Oct 2022). Socio-demographic information was collected at baseline, and PLEs, depressive and anxiety symptoms, and adverse life events were assessed in both waves. Cross-lagged panel network analyses were used to establish networks among individuals with baseline PLEs as well as those without.
Results
At baseline, 455(13.5%) students were screened positive for PLEs. Distinct dynamic network structures were revealed among participants with baseline PLEs and those without. While ‘psychomotor disturbance’ had the strongest connection with PLEs in participants with baseline PLEs, ‘suicide/self-harm’ was most associated with PLEs in those without. Among all three subtypes of PLEs, bizarre experiences and persecutory ideation were the most affected nodes by other constructs in participants with baseline PLEs and those without, respectively. Additionally, wide interconnections within the PLEs construct existed only among participants without baseline PLEs.
Conclusions
The study provides time-variant associations between PLEs and depressive symptoms, anxiety symptoms, and adverse life events using network structures. These findings help to reveal the crucial markers of the occurrence and persistence of PLEs, and shed high light on future intervention aimed to prevent and relieve PLEs.
We perform linear stability analysis and direct numerical simulations to study the effect of the radius ratio on the instability and flow characteristics of the sheared annular centrifugal Rayleigh–Bénard convection, where the cold inner cylinder and the hot outer cylinder rotate with a small angular velocity difference. With the shear enhancement, the thermal convection is suppressed and finally becomes stable for different radius ratios $\{\eta \in \mathbb {R}|0.2\leqslant \eta \le 0.95\}$. Considering the inhomogeneous distribution of shear stresses in the base flow, a new global Richardson number $Ri_g$ is defined and the marginal-state curves for different radius ratios are successfully unified in the parameter domain of $Ri_g$ and the Rayleigh number $Ra$. The results are consistent with the marginal-state curve of the wall-sheared classical Rayleigh–Bénard convection in the streamwise direction, demonstrating that the basic stabilization mechanisms are identical. Moreover, systems with small radius ratios exhibit greater geometric asymmetry. On the one hand, this results in a smaller equivalent aspect ratio for the system, accommodating fewer convection roll pairs; fewer roll pairs are more likely to cause a transition in the flow structure during shear enhancement. On the other hand, the shear distribution is more inhomogeneous, allowing for an outward shift of the convection region and the elevation of bulk temperature under strong shear.
The unsteady mechanism of unstart flow for an inlet with rectangular-to-elliptical shape transition (REST) under the off-design condition at a Mach of 4 is investigated using the delay detached eddy simulation method. With the help of numerical simulations, the unsteady dynamics, especially the low-frequency characteristics of the REST inlet unstart flow, as well as the self-sustaining mechanism, is investigated. The instantaneous flow illustrates the unsteady phenomena of the REST unstart flow, including the interaction between the cowl-closure leading edge (CLE) shock and the shear layer, breathing of the separation bubble, flapping of the separation shock, instability of the shear layer and vortex shedding along the shear layer. The spectral analysis reveals that the lower frequency dynamics is associated with the breathing of the separation bubble and the flapping motion of the separation shock wave, while the higher frequency is related to the instability of the shear layer affected by cowl-closure leading edge shock and the formation of shedding vortices. Further, coherence analysis shows that the contribution of these flow structures dominating the low-frequency dynamics couple with each other. Based on the dynamic mode decomposition results, the characteristics that contribute to the unsteady behaviour of unstart flow are summarized. The streamwise vortices downstream of the separation and the shedding vortices are believed to be the main driving force of the global low-frequency unsteadiness of the REST inlet unstart flow under the off-design condition. Moreover, the CLE shock plays an important role in the process during the dominant flow structure conversion from the backflow within the separation bubble into elongated streamwise structures.
The measurement of X-ray continuous emission from laser-driven plasma was achieved through multiple monochromatic imaging utilizing a multilayer mirror array. This methodology was exemplified by the development of an eight-channel X-ray imaging system, capable of operating in the energy range of several keV with a spatial resolution of approximately 3 μm. By integrating this system with a streak camera, the temperature and trajectory of imploding capsules were successfully measured at the kJ-class Shenguang III prototype laser facility. This approach provides a synchronous diagnostic method for the spatial, temporal and spectral analysis of laser-driven plasma, characterized by its high efficiency and resolution.
Broomcorn millet and foxtail millet were first cultivated in Neolithic China then the process spread west across Asia during the Bronze Age. But the distinctive ceramic, and later bronze, vessels utilised in East Asian cuisines for boiling and steaming grains did not move west alongside these crops. Here, the authors use measurements of 3876 charred millet grains to evaluate regional variations and implications for food preparation. In contrast to wheat grains, which became smaller as their cultivation moved east, millet grains became larger as they spread from northern China into Inner Asia and Tibet. This indicates the decoupling of millets from associated cooking techniques as they reached geographical and cultural areas.
We investigate the coupling effect of buoyancy and shear based on an annular centrifugal Rayleigh–Bénard convection (ACRBC) system in which two cylinders rotate with an angular velocity difference. Direct numerical simulations are performed in a Rayleigh number range $10^6\leq Ra\leq 10^8$, at fixed Prandtl number $Pr=4.3$, inverse Rossby number $Ro^{-1}=20$, and radius ratio $\eta =0.5$. The shear, represented by the non-dimensional rotational speed difference $\varOmega$, varies from $0$ to $10$, corresponding to an ACRBC without shear and a radially heated Taylor–Couette flow with only the inner cylinder rotating, respectively. A stable regime is found in the middle part of the interval for $\varOmega$, and divides the whole parameter space into three regimes: buoyancy-dominated, stable and shear-dominated. Clear boundaries between the regimes are given by linear stability analysis, meaning the marginal state of the flow. In the buoyancy-dominated regime, the flow is a quasi-two-dimensional flow on the $r\varphi$ plane; as shear increases, both the growth rate of instability and the heat transfer are depressed. In the shear-dominated regime, the flow is mainly on the $rz$ plane. The shear is so strong that the temperature acts as a passive scalar, and the heat transfer is greatly enhanced. The study shows that shear can stabilize buoyancy-driven convection, makes a detailed analysis of the flow characteristics in different regimes, and reveals the complex coupling mechanism of shear and buoyancy, which may have implications for fundamental studies and industrial designs.
SARS-CoV-2 rapidly spreads among humans via social networks, with social mixing and network characteristics potentially facilitating transmission. However, limited data on topological structural features has hindered in-depth studies. Existing research is based on snapshot analyses, preventing temporal investigations of network changes. Comparing network characteristics over time offers additional insights into transmission dynamics. We examined confirmed COVID-19 patients from an eastern Chinese province, analyzing social mixing and network characteristics using transmission network topology before and after widespread interventions. Between the two time periods, the percentage of singleton networks increased from 38.9$ \% $ to 62.8$ \% $$ (p<0.001) $; the average shortest path length decreased from 1.53 to 1.14 $ (p<0.001) $; the average betweenness reduced from 0.65 to 0.11$ (p<0.001) $; the average cluster size dropped from 4.05 to 2.72 $ (p=0.004) $; and the out-degree had a slight but nonsignificant decline from 0.75 to 0.63 $ (p=0.099). $ Results show that nonpharmaceutical interventions effectively disrupted transmission networks, preventing further disease spread. Additionally, we found that the networks’ dynamic structure provided more information than solely examining infection curves after applying descriptive and agent-based modeling approaches. In summary, we investigated social mixing and network characteristics of COVID-19 patients during different pandemic stages, revealing transmission network heterogeneities.
We perform a two-dimensional numerical study on the thermal effect of porous media on global heat transport and flow structure in Rayleigh–Bénard (RB) convection, focusing on the role of thermal conductivity $\lambda$ of porous media, which ranges from $0.1$ to $50$ relative to the fluid. The simulation is carried out in a square RB cell with the Rayleigh number $Ra$ ranging from $10^7$ to $10^9$ and the Prandtl number $Pr$ fixed at $4.3$. The porosity of the system is fixed at $\phi =0.812$, with the porous media modelled by a set of randomly displayed circular obstacles. For a fixed $Ra$, the increase of conductivity shows a small effect on the total heat transfer, slightly depressing the Nusselt number. The limited influence comes from the small number of obstacles contacting with thermal plumes in the system as well as the counteraction of the increased plume area and the depressed plume strength. The study shows that the global heat transfer is insensitive to the conduction effect of separated porous media in the bulk region, which may have implications for industrial designs.
The relationship of a diet low in fibre with mortality has not been evaluated. This study aims to assess the burden of non-communicable chronic diseases (NCD) attributable to a diet low in fibre globally from 1990 to 2019.
Design:
All data were from the Global Burden of Disease (GBD) Study 2019, in which the mortality, disability-adjusted life-years (DALY) and years lived with disability (YLD) were estimated with Bayesian geospatial regression using data at global, regional and country level acquired from an extensively systematic review.
Setting:
All data sourced from the GBD Study 2019.
Participants:
All age groups for both sexes.
Results:
The age-standardised mortality rates (ASMR) declined in most GBD regions; however, in Southern sub-Saharan Africa, the ASMR increased from 4·07 (95 % uncertainty interval (UI) (2·08, 6·34)) to 4·60 (95 % UI (2·59, 6·90)), and in Central sub-Saharan Africa, the ASMR increased from 7·46 (95 % UI (3·64, 11·90)) to 9·34 (95 % UI (4·69, 15·25)). Uptrends were observed in the age-standardised YLD rates attributable to a diet low in fibre in a number of GBD regions. The burden caused by diabetes mellitus increased in Central Asia, Southern sub-Saharan Africa and Eastern Europe.
Conclusions:
The burdens of disease attributable to a diet low in fibre in Southern sub-Saharan Africa and Central sub-Saharan Africa and the age-standardised YLD rates in a number of GBD regions increased from 1990 to 2019. Therefore, greater efforts are needed to reduce the disease burden caused by a diet low in fibre.
Maternal gestational weight gain (GWG) is an important determinant of infant birth weight, and having adequate total GWG has been widely recommended. However, the association of timing of GWG with birth weight remains controversial. We aimed to evaluate this association, especially among women with adequate total GWG. In a prospective cohort study, pregnant women’s weight was routinely measured during pregnancy, and their GWG was calculated for the ten intervals: the first 13, 14–18, 19–23, 24–28, 29–30, 31–32, 33–34, 35–36, 37–38 and 39–40 weeks. Birth weight was measured, and small-for-gestational-age (SGA) and large-for-gestational-age were assessed. Generalized linear and Poisson models were used to evaluate the associations of GWG with birth weight and its outcomes after multivariate adjustment, respectively. Of the 5049 women, increased GWG in the first 30 weeks was associated with increased birth weight for male infants, and increased GWG in the first 28 weeks was associated with increased birth weight for females. Among 1713 women with adequate total GWG, increased GWG percent between 14 and 23 weeks was associated with increased birth weight. Moreover, inadequate GWG between 14 and 23 weeks, compared with the adequate GWG, was associated with an increased risk of SGA (43 (13·7 %) v. 42 (7·2 %); relative risk 1·83, 95 % CI 1·21, 2·76). Timing of GWG may influence infant birth weight differentially, and women with inadequate GWG between 14 and 23 weeks may be at higher risk of delivering SGA infants, despite having adequate total GWG.
This study aimed to investigate the organization, workload, and psychological impact of COVID-19 on healthcare workers from the domestic Medical Aid Teams (MATs) sent to Wuhan in China.
Methods:
Leaders and members of MATs involved in the care for COVID-19 patients were invited to participate in a study by completing 2 separate self-report questionnaires from April 1 to 24, 2020.
Results:
A total of 9 MAT leaders were involved and 464 valid questionnaires were collected from 140 doctors and 324 nurses. Mean age of the doctors and nurses were 39.34 ± 6.70 (26∼58 years old) and 31.88 ± 5.29 (21∼52 years old), with 72 (15.5%) being males. Nurses were identified as an independent risk factor (HR 1.898; P = 0.001) for a day working time in the multivariate analysis. The proportions of psychological consulting received among nurses were higher than those among doctors (49.7 vs 30.0%, P < 0.001). More than 50% of the anesthetists and emergency doctors who have received psychological consulting thought that it was effective according to self-evaluation.
Conclusions:
This study focused on healthcare workers’ situation during the early period of the pandemic. Nurses worked longer than doctors. The effectiveness of psychological consulting depends on the physicians’ specialties and the working conditions of the nurses and psychological consulting targeting different specialties need to be improved.
The aim of the present study was to compare the rate of preterm birth (PTB) and growth from birth to 18 years between twins conceived by in vitro fertilization (IVF) and twins conceived by spontaneous conception (SC) in mainland China. The retrospective cohort study included 1164 twins resulting from IVF and 25,654 twins conceived spontaneously, of which 494 from IVF and 6338 from SC were opposite-sex twins. PTB and low birth weight (LBW), and growth, including length/height and weight, were compared between the two groups at five stages: infancy (0 year), toddler period (1–2 years), preschool (3–5 years), primary or elementary school (6–11 years), and adolescence (10–18 years). Few statistically significant differences were found for LBW and growth between the two groups after adjusting for PTB and other confounders. Twins born by IVF faced an increased risk of PTB compared with those born by SC (adjusted odds ratio [aOR] 8.21, 95% confidence interval [CI] [3.19, 21.13], p < .001 in all twins and aOR 10.12, 95% CI [2.32, 44.04], p = .002 in opposite-sex twins). Twins born by IVF experienced a similar growth at five stages (0–18 years old) when compared with those born by SC. PTB risk, however, is significantly higher for twins conceived by IVF than those conceived by SC.
Chronic inflammation exerts pleiotropic effects in the aetiology and progression of chronic obstructive pulmonary disease (COPD). Glucosamine is widely used in many countries and may have anti-inflammatory properties. We aimed to prospectively evaluate the association of regular glucosamine use with incident COPD risk and explore whether such association could be modified by smoking in the UK Biobank cohort, which recruited more than half a million participants aged 40–69 years from across the UK between 2006 and 2010. Cox proportional hazards models with adjustment for potential confounding factors were used to calculate hazard ratios (HR) as well as 95 % CI for the risk of incident COPD. During a median follow-up of 8·96 years (interquartile range 8·29–9·53 years), 9016 new-onset events of COPD were documented. We found that the regular use of glucosamine was associated with a significantly lower risk of incident COPD with multivariable adjusted HR of 0·80 (95 % CI, 0·75, 0·85; P < 0·001). When subgroup analyses were performed by smoking status, the adjusted HR for the association of regular glucosamine use with incident COPD were 0·84 (0·73, 0·96), 0·84 (0·77, 0·92) and 0·71 (0·62, 0·80) among never smokers, former smokers and current smokers, respectively. No significant interaction was observed between glucosamine use and smoking status (Pfor interaction = 0·078). Incident COPD could be reduced by 14 % to 84 % through a combination of regular glucosamine use and smoking cessation.
Nutritional Risk Screening index is a standard tool to assess nutritional risk, but epidemiological data are scarce on controlling nutritional status (CONUT) as a prognostic marker in acute haemorrhagic stroke (AHS). We aimed to explore whether the CONUT may predict a 3-month functional outcome in AHS. In total, 349 Chinese patients with incident AHS were consecutively recruited, and their malnutrition risks were determined using a high CONUT score of ≥ 2. The cohort patients were divided into high-CONUT (≥ 2) and low-CONUT (< 2) groups, and primary outcomes were a poor functional prognosis defined as the modified Rankin Scale (mRS) score of ≥ 3 at post-discharge for 3 months. Odds ratios (OR) with 95 % confidence intervals (CI) for the poor functional prognosis at post-discharge were estimated by using a logistic analysis with additional adjustments for unbalanced variables between the high-CONUT and low-CONUT groups. A total of 328 patients (60·38 ± 12·83 years; 66·77 % male) completed the mRS assessment at post-discharge for 3 months, with 172 patients at malnutrition risk at admission and 104 patients with a poor prognosis. The levels of total cholesterol and total lymphocyte counts were significantly lower in high-CONUT patients than low-CONUT patients (P = 0·012 and < 0·001, respectively). At 3-month post discharge, there was a greater risk for the poor outcome in the high-CONUT compared with the low-CONUT patients at admission (OR: 2·32, 95 % CI: 1·28, 4·17). High-CONUT scores independently predict a 3-month poor prognosis in AHS, which helps to identify those who need additional nutritional managements.
Schizophrenia is considered a polygenic disorder. People with schizophrenia and those with genetic high risk of schizophrenia (GHR) have presented with similar neurodevelopmental deficits in hemispheric asymmetry. The potential associations between neurodevelopmental abnormalities and schizophrenia-related risk genes in both schizophrenia and those with GHR remains unclear.
Aims
To investigate the shared and specific alternations to the structural network in people with schizophrenia and those with GHR. And to identify an association between vulnerable structural network alternation and schizophrenia-related risk genes.
Method
A total of 97 participants with schizophrenia, 79 participants with GHR and 192 healthy controls, underwent diffusion tensor imaging (DTI) scans at a single site. We used graph theory to characterise hemispheric and whole-brain structural network topological metrics. For 26 people in the schizophrenia group and 48 in the GHR group with DTI scans we also calculated their schizophrenia-related polygenic risk scores (SZ-PRSs). The correlations between alterations to the structural network and SZ-PRSs were calculated. Based on the identified genetic–neural association, bioinformatics enrichment was explored.
Results
There were significant hemispheric asymmetric deficits of nodal efficiency, global and local efficiency in the schizophrenia and GHR groups. Hemispheric asymmetric deficit of local efficiency was significantly positively correlated with SZ-PRSs in the schizophrenia and GHR groups. Bioinformatics enrichment analysis showed that these risk genes may be linked to signal transduction, neural development and neuron structure. The schizophrenia group showed a significant decrease in the whole-brain structural network.
Conclusions
The shared asymmetric deficits in people with schizophrenia and those with GHR, and the association between anomalous asymmetry and SZ-PRSs suggested a vulnerability imaging marker regulated by schizophrenia-related risk genes. Our findings provide new insights into asymmetry regulated by risk genes and provides a better understanding of the genetic–neural pathological underpinnings of schizophrenia.