We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Channel coding lies at the heart of digital communication and data storage. Fully updated, including a new chapter on polar codes, this detailed introduction describes the core theory of channel coding, decoding algorithms, implementation details, and performance analyses. This new edition includes over 50 new end-of-chapter problems and new figures and worked examples throughout. The authors emphasize the practical approach and present clear information on modern channel codes, including turbo and low-density parity-check (LDPC) codes, detailed coverage of BCH codes, Reed-Solomon codes, convolutional codes, finite geometry codes, product codes as well as polar codes for error correction and detection, providing a one-stop resource for classical and modern coding techniques. Assuming no prior knowledge in the field of channel coding, the opening chapters begin with basic theory to introduce newcomers to the subject. Later chapters then extend to advanced topics such as code ensemble performance analyses and algebraic code design.
We aimed to determine whether benchmarking antimicrobial use (AU) to antimicrobial resistance (AR) using select AU/AR ratios is more informative than AU metrics in isolation.
Design:
We retrospectively measured AU (antimicrobial therapy days per 1,000 days present) and AU/AR ratios (specific antimicrobial therapy days per corresponding AR event) in two hospitals during 2020 through 2022. We then had antimicrobial stewardship committee members evaluate each AU and corresponding AU/AR value and indicate whether they believed it represented potential overuse, appropriate use, or potential underuse of the antimicrobials, or whether they could not provide an assessment.
Setting:
Two acute-care hospitals.
Patients:
Hospitalized patients.
Results:
In semi-annual facility-wide analyses, echinocandins had a median AU/AR ratio of 658.5 therapy days per fluconazole-resistant Candida event in Hospital A, IV vancomycin had a median AU/AR ratio of 114.9 and 108.2 therapy days per methicillin-resistant Staphylococcus aureus event in Hospital A and B, respectively, and linezolid had a median AU/AR ratio of 33.8 and 88.0 therapy days per vancomycin-resistant Enterococcus event in Hospital A and B, respectively. When AU and AU/AR values were evaluated by stewardship committees, more respondents were able to assess antimicrobial use based on AU/AR values compared to AU values. Based on AU/AR ratios, most respondents identified potential overuse of echinocandins and IV vancomycin in Hospital A, and potential overuse of linezolid and IV vancomycin in Hospital B.
Conclusion:
Select AU/AR ratios provided informative metrics to antimicrobial stewardship personnel, which can be used to motivate audits of antimicrobial administration to determine appropriateness.
Channel coding lies at the heart of digital communication and data storage. Fully updated to include current innovations in the field, including a new chapter on polar codes, this detailed introduction describes the core theory of channel coding, decoding algorithms, implementation details, and performance analyses. This edition includes over 50 new end-of-chapter problems to challenge students and numerous new figures and examples throughout.
The authors emphasize a practical approach and clearly present information on modern channel codes, including polar, turbo, and low-density parity-check (LDPC) codes, as well as detailed coverage of BCH codes, Reed–Solomon codes, convolutional codes, finite geometry codes, and product codes for error correction, providing a one-stop resource for both classical and modern coding techniques.
Assuming no prior knowledge in the field of channel coding, the opening chapters begin with basic theory to introduce newcomers to the subject. Later chapters then begin with classical codes, continue with modern codes, and extend to advanced topics such as code ensemble performance analyses and algebraic LDPC code design.
300 varied and stimulating end-of-chapter problems test and enhance learning, making this an essential resource for students and practitioners alike.
Provides a one-stop resource for both classical and modern coding techniques.
Starts with the basic theory before moving on to advanced topics, making it perfect for newcomers to the field of channel coding.
180 worked examples guide students through the practical application of the theory.
Channel coding lies at the heart of digital communication and data storage. Fully updated to include current innovations in the field, including a new chapter on polar codes, this detailed introduction describes the core theory of channel coding, decoding algorithms, implementation details, and performance analyses. This edition includes over 50 new end-of-chapter problems to challenge students and numerous new figures and examples throughout.
The authors emphasize a practical approach and clearly present information on modern channel codes, including polar, turbo, and low-density parity-check (LDPC) codes, as well as detailed coverage of BCH codes, Reed–Solomon codes, convolutional codes, finite geometry codes, and product codes for error correction, providing a one-stop resource for both classical and modern coding techniques.
Assuming no prior knowledge in the field of channel coding, the opening chapters begin with basic theory to introduce newcomers to the subject. Later chapters then begin with classical codes, continue with modern codes, and extend to advanced topics such as code ensemble performance analyses and algebraic LDPC code design.
300 varied and stimulating end-of-chapter problems test and enhance learning, making this an essential resource for students and practitioners alike.
Provides a one-stop resource for both classical and modern coding techniques.
Starts with the basic theory before moving on to advanced topics, making it perfect for newcomers to the field of channel coding.
180 worked examples guide students through the practical application of the theory.
Channel coding lies at the heart of digital communication and data storage. Fully updated to include current innovations in the field, including a new chapter on polar codes, this detailed introduction describes the core theory of channel coding, decoding algorithms, implementation details, and performance analyses. This edition includes over 50 new end-of-chapter problems to challenge students and numerous new figures and examples throughout.
The authors emphasize a practical approach and clearly present information on modern channel codes, including polar, turbo, and low-density parity-check (LDPC) codes, as well as detailed coverage of BCH codes, Reed–Solomon codes, convolutional codes, finite geometry codes, and product codes for error correction, providing a one-stop resource for both classical and modern coding techniques.
Assuming no prior knowledge in the field of channel coding, the opening chapters begin with basic theory to introduce newcomers to the subject. Later chapters then begin with classical codes, continue with modern codes, and extend to advanced topics such as code ensemble performance analyses and algebraic LDPC code design.
300 varied and stimulating end-of-chapter problems test and enhance learning, making this an essential resource for students and practitioners alike.
Provides a one-stop resource for both classical and modern coding techniques.
Starts with the basic theory before moving on to advanced topics, making it perfect for newcomers to the field of channel coding.
180 worked examples guide students through the practical application of the theory.
Channel coding lies at the heart of digital communication and data storage. Fully updated to include current innovations in the field, including a new chapter on polar codes, this detailed introduction describes the core theory of channel coding, decoding algorithms, implementation details, and performance analyses. This edition includes over 50 new end-of-chapter problems to challenge students and numerous new figures and examples throughout.
The authors emphasize a practical approach and clearly present information on modern channel codes, including polar, turbo, and low-density parity-check (LDPC) codes, as well as detailed coverage of BCH codes, Reed–Solomon codes, convolutional codes, finite geometry codes, and product codes for error correction, providing a one-stop resource for both classical and modern coding techniques.
Assuming no prior knowledge in the field of channel coding, the opening chapters begin with basic theory to introduce newcomers to the subject. Later chapters then begin with classical codes, continue with modern codes, and extend to advanced topics such as code ensemble performance analyses and algebraic LDPC code design.
300 varied and stimulating end-of-chapter problems test and enhance learning, making this an essential resource for students and practitioners alike.
Provides a one-stop resource for both classical and modern coding techniques.
Starts with the basic theory before moving on to advanced topics, making it perfect for newcomers to the field of channel coding.
180 worked examples guide students through the practical application of the theory.
Channel coding lies at the heart of digital communication and data storage. Fully updated to include current innovations in the field, including a new chapter on polar codes, this detailed introduction describes the core theory of channel coding, decoding algorithms, implementation details, and performance analyses. This edition includes over 50 new end-of-chapter problems to challenge students and numerous new figures and examples throughout.
The authors emphasize a practical approach and clearly present information on modern channel codes, including polar, turbo, and low-density parity-check (LDPC) codes, as well as detailed coverage of BCH codes, Reed–Solomon codes, convolutional codes, finite geometry codes, and product codes for error correction, providing a one-stop resource for both classical and modern coding techniques.
Assuming no prior knowledge in the field of channel coding, the opening chapters begin with basic theory to introduce newcomers to the subject. Later chapters then begin with classical codes, continue with modern codes, and extend to advanced topics such as code ensemble performance analyses and algebraic LDPC code design.
300 varied and stimulating end-of-chapter problems test and enhance learning, making this an essential resource for students and practitioners alike.
Provides a one-stop resource for both classical and modern coding techniques.
Starts with the basic theory before moving on to advanced topics, making it perfect for newcomers to the field of channel coding.
180 worked examples guide students through the practical application of the theory.
Channel coding lies at the heart of digital communication and data storage. Fully updated to include current innovations in the field, including a new chapter on polar codes, this detailed introduction describes the core theory of channel coding, decoding algorithms, implementation details, and performance analyses. This edition includes over 50 new end-of-chapter problems to challenge students and numerous new figures and examples throughout.
The authors emphasize a practical approach and clearly present information on modern channel codes, including polar, turbo, and low-density parity-check (LDPC) codes, as well as detailed coverage of BCH codes, Reed–Solomon codes, convolutional codes, finite geometry codes, and product codes for error correction, providing a one-stop resource for both classical and modern coding techniques.
Assuming no prior knowledge in the field of channel coding, the opening chapters begin with basic theory to introduce newcomers to the subject. Later chapters then begin with classical codes, continue with modern codes, and extend to advanced topics such as code ensemble performance analyses and algebraic LDPC code design.
300 varied and stimulating end-of-chapter problems test and enhance learning, making this an essential resource for students and practitioners alike.
Provides a one-stop resource for both classical and modern coding techniques.
Starts with the basic theory before moving on to advanced topics, making it perfect for newcomers to the field of channel coding.
180 worked examples guide students through the practical application of the theory.
Channel coding lies at the heart of digital communication and data storage. Fully updated to include current innovations in the field, including a new chapter on polar codes, this detailed introduction describes the core theory of channel coding, decoding algorithms, implementation details, and performance analyses. This edition includes over 50 new end-of-chapter problems to challenge students and numerous new figures and examples throughout.
The authors emphasize a practical approach and clearly present information on modern channel codes, including polar, turbo, and low-density parity-check (LDPC) codes, as well as detailed coverage of BCH codes, Reed–Solomon codes, convolutional codes, finite geometry codes, and product codes for error correction, providing a one-stop resource for both classical and modern coding techniques.
Assuming no prior knowledge in the field of channel coding, the opening chapters begin with basic theory to introduce newcomers to the subject. Later chapters then begin with classical codes, continue with modern codes, and extend to advanced topics such as code ensemble performance analyses and algebraic LDPC code design.
300 varied and stimulating end-of-chapter problems test and enhance learning, making this an essential resource for students and practitioners alike.
Provides a one-stop resource for both classical and modern coding techniques.
Starts with the basic theory before moving on to advanced topics, making it perfect for newcomers to the field of channel coding.
180 worked examples guide students through the practical application of the theory.
Channel coding lies at the heart of digital communication and data storage. Fully updated to include current innovations in the field, including a new chapter on polar codes, this detailed introduction describes the core theory of channel coding, decoding algorithms, implementation details, and performance analyses. This edition includes over 50 new end-of-chapter problems to challenge students and numerous new figures and examples throughout.
The authors emphasize a practical approach and clearly present information on modern channel codes, including polar, turbo, and low-density parity-check (LDPC) codes, as well as detailed coverage of BCH codes, Reed–Solomon codes, convolutional codes, finite geometry codes, and product codes for error correction, providing a one-stop resource for both classical and modern coding techniques.
Assuming no prior knowledge in the field of channel coding, the opening chapters begin with basic theory to introduce newcomers to the subject. Later chapters then begin with classical codes, continue with modern codes, and extend to advanced topics such as code ensemble performance analyses and algebraic LDPC code design.
300 varied and stimulating end-of-chapter problems test and enhance learning, making this an essential resource for students and practitioners alike.
Provides a one-stop resource for both classical and modern coding techniques.
Starts with the basic theory before moving on to advanced topics, making it perfect for newcomers to the field of channel coding.
180 worked examples guide students through the practical application of the theory.
Channel coding lies at the heart of digital communication and data storage. Fully updated to include current innovations in the field, including a new chapter on polar codes, this detailed introduction describes the core theory of channel coding, decoding algorithms, implementation details, and performance analyses. This edition includes over 50 new end-of-chapter problems to challenge students and numerous new figures and examples throughout.
The authors emphasize a practical approach and clearly present information on modern channel codes, including polar, turbo, and low-density parity-check (LDPC) codes, as well as detailed coverage of BCH codes, Reed–Solomon codes, convolutional codes, finite geometry codes, and product codes for error correction, providing a one-stop resource for both classical and modern coding techniques.
Assuming no prior knowledge in the field of channel coding, the opening chapters begin with basic theory to introduce newcomers to the subject. Later chapters then begin with classical codes, continue with modern codes, and extend to advanced topics such as code ensemble performance analyses and algebraic LDPC code design.
300 varied and stimulating end-of-chapter problems test and enhance learning, making this an essential resource for students and practitioners alike.
Provides a one-stop resource for both classical and modern coding techniques.
Starts with the basic theory before moving on to advanced topics, making it perfect for newcomers to the field of channel coding.
180 worked examples guide students through the practical application of the theory.
Channel coding lies at the heart of digital communication and data storage. Fully updated to include current innovations in the field, including a new chapter on polar codes, this detailed introduction describes the core theory of channel coding, decoding algorithms, implementation details, and performance analyses. This edition includes over 50 new end-of-chapter problems to challenge students and numerous new figures and examples throughout.
The authors emphasize a practical approach and clearly present information on modern channel codes, including polar, turbo, and low-density parity-check (LDPC) codes, as well as detailed coverage of BCH codes, Reed–Solomon codes, convolutional codes, finite geometry codes, and product codes for error correction, providing a one-stop resource for both classical and modern coding techniques.
Assuming no prior knowledge in the field of channel coding, the opening chapters begin with basic theory to introduce newcomers to the subject. Later chapters then begin with classical codes, continue with modern codes, and extend to advanced topics such as code ensemble performance analyses and algebraic LDPC code design.
300 varied and stimulating end-of-chapter problems test and enhance learning, making this an essential resource for students and practitioners alike.
Provides a one-stop resource for both classical and modern coding techniques.
Starts with the basic theory before moving on to advanced topics, making it perfect for newcomers to the field of channel coding.
180 worked examples guide students through the practical application of the theory.
Channel coding lies at the heart of digital communication and data storage. Fully updated to include current innovations in the field, including a new chapter on polar codes, this detailed introduction describes the core theory of channel coding, decoding algorithms, implementation details, and performance analyses. This edition includes over 50 new end-of-chapter problems to challenge students and numerous new figures and examples throughout.
The authors emphasize a practical approach and clearly present information on modern channel codes, including polar, turbo, and low-density parity-check (LDPC) codes, as well as detailed coverage of BCH codes, Reed–Solomon codes, convolutional codes, finite geometry codes, and product codes for error correction, providing a one-stop resource for both classical and modern coding techniques.
Assuming no prior knowledge in the field of channel coding, the opening chapters begin with basic theory to introduce newcomers to the subject. Later chapters then begin with classical codes, continue with modern codes, and extend to advanced topics such as code ensemble performance analyses and algebraic LDPC code design.
300 varied and stimulating end-of-chapter problems test and enhance learning, making this an essential resource for students and practitioners alike.
Provides a one-stop resource for both classical and modern coding techniques.
Starts with the basic theory before moving on to advanced topics, making it perfect for newcomers to the field of channel coding.
180 worked examples guide students through the practical application of the theory.
Channel coding lies at the heart of digital communication and data storage. Fully updated to include current innovations in the field, including a new chapter on polar codes, this detailed introduction describes the core theory of channel coding, decoding algorithms, implementation details, and performance analyses. This edition includes over 50 new end-of-chapter problems to challenge students and numerous new figures and examples throughout.
The authors emphasize a practical approach and clearly present information on modern channel codes, including polar, turbo, and low-density parity-check (LDPC) codes, as well as detailed coverage of BCH codes, Reed–Solomon codes, convolutional codes, finite geometry codes, and product codes for error correction, providing a one-stop resource for both classical and modern coding techniques.
Assuming no prior knowledge in the field of channel coding, the opening chapters begin with basic theory to introduce newcomers to the subject. Later chapters then begin with classical codes, continue with modern codes, and extend to advanced topics such as code ensemble performance analyses and algebraic LDPC code design.
300 varied and stimulating end-of-chapter problems test and enhance learning, making this an essential resource for students and practitioners alike.
Provides a one-stop resource for both classical and modern coding techniques.
Starts with the basic theory before moving on to advanced topics, making it perfect for newcomers to the field of channel coding.
180 worked examples guide students through the practical application of the theory.