To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Patients with posttraumatic stress disorder (PTSD) exhibit smaller regional brain volumes in commonly reported regions including the amygdala and hippocampus, regions associated with fear and memory processing. In the current study, we have conducted a voxel-based morphometry (VBM) meta-analysis using whole-brain statistical maps with neuroimaging data from the ENIGMA-PGC PTSD working group.
Methods
T1-weighted structural neuroimaging scans from 36 cohorts (PTSD n = 1309; controls n = 2198) were processed using a standardized VBM pipeline (ENIGMA-VBM tool). We meta-analyzed the resulting statistical maps for voxel-wise differences in gray matter (GM) and white matter (WM) volumes between PTSD patients and controls, performed subgroup analyses considering the trauma exposure of the controls, and examined associations between regional brain volumes and clinical variables including PTSD (CAPS-4/5, PCL-5) and depression severity (BDI-II, PHQ-9).
Results
PTSD patients exhibited smaller GM volumes across the frontal and temporal lobes, and cerebellum, with the most significant effect in the left cerebellum (Hedges’ g = 0.22, pcorrected = .001), and smaller cerebellar WM volume (peak Hedges’ g = 0.14, pcorrected = .008). We observed similar regional differences when comparing patients to trauma-exposed controls, suggesting these structural abnormalities may be specific to PTSD. Regression analyses revealed PTSD severity was negatively associated with GM volumes within the cerebellum (pcorrected = .003), while depression severity was negatively associated with GM volumes within the cerebellum and superior frontal gyrus in patients (pcorrected = .001).
Conclusions
PTSD patients exhibited widespread, regional differences in brain volumes where greater regional deficits appeared to reflect more severe symptoms. Our findings add to the growing literature implicating the cerebellum in PTSD psychopathology.
Multicenter clinical trials are essential for evaluating interventions but often face significant challenges in study design, site coordination, participant recruitment, and regulatory compliance. To address these issues, the National Institutes of Health’s National Center for Advancing Translational Sciences established the Trial Innovation Network (TIN). The TIN offers a scientific consultation process, providing access to clinical trial and disease experts who provide input and recommendations throughout the trial’s duration, at no cost to investigators. This approach aims to improve trial design, accelerate implementation, foster interdisciplinary teamwork, and spur innovations that enhance multicenter trial quality and efficiency. The TIN leverages resources of the Clinical and Translational Science Awards (CTSA) program, complementing local capabilities at the investigator’s institution. The Initial Consultation process focuses on the study’s scientific premise, design, site development, recruitment and retention strategies, funding feasibility, and other support areas. As of 6/1/2024, the TIN has provided 431 Initial Consultations to increase efficiency and accelerate trial implementation by delivering customized support and tailored recommendations. Across a range of clinical trials, the TIN has developed standardized, streamlined, and adaptable processes. We describe these processes, provide operational metrics, and include a set of lessons learned for consideration by other trial support and innovation networks.
Although cognitive remediation (CR) improves cognition and functioning, the key features that promote or inhibit its effectiveness, especially between cognitive domains, remain unknown. Discovering these key features will help to develop CR for more impact.
Aim
To identify interrelations between cognition, symptoms, and functioning, using a novel network analysis approach and how CR affects these recovery outcomes.
Methods
A secondary analysis of randomized controlled trial data (N = 165) of CR in early psychosis. Regularized partial correlation networks were estimated, including symptoms, cognition, and functioning, for pre-, post-treatment, and change over time. Pre- and post-CR networks were compared on global strength, structure, edge invariance, and centrality invariance.
Results
Cognition, negative, and positive symptoms were separable constructs, with symptoms showing independent relationships with cognition. Negative symptoms were central to the CR networks and most strongly associated with change in functioning. Verbal and visual learning improvement showed independent relationships to improved social functioning and negative symptoms. Only visual learning improvement was positively associated with personal goal achievement. Pre- and post-CR networks did not differ in structure (M = 0.20, p = 0.45) but differed in global strength, reflecting greater overall connectivity in the post-CR network (S = 0.91, p = 0.03).
Conclusions
Negative symptoms influenced network changes following therapy, and their reduction was linked to improvement in verbal and visual learning following CR. Independent relationships between visual and verbal learning and functioning suggest that they may be key intervention targets to enhance social and occupational functioning.
This article presents a framework of ethical analysis for anticipatory evaluation of advanced biopreservation technologies and employs the framework illustratively in three domains. The framework features four clusters of general ethical considerations: (1) Producing Benefits, Minimizing Harms, Balancing Benefits, Risk, and Costs; (2) Justice, Fairness, Equity; (3) Respect for Autonomy; and (4) Transparency, Trustworthiness, and Public Trust.
Advanced biopreservation technologies using subzero approaches such as supercooling, partial freezing, and vitrification with reanimating techniques including nanoparticle infusion and laser rewarming are rapidly emerging as technologies with potential to radically disrupt biomedicine, research, aquaculture, and conservation. These technologies could pause biological time and facilitate large-scale banking of biomedical products including organs, tissues, and cell therapies.
Although the link between alcohol involvement and behavioral phenotypes (e.g. impulsivity, negative affect, executive function [EF]) is well-established, the directionality of these associations, specificity to stages of alcohol involvement, and extent of shared genetic liability remain unclear. We estimate longitudinal associations between transitions among alcohol milestones, behavioral phenotypes, and indices of genetic risk.
Methods
Data came from the Collaborative Study on the Genetics of Alcoholism (n = 3681; ages 11–36). Alcohol transitions (first: drink, intoxication, alcohol use disorder [AUD] symptom, AUD diagnosis), internalizing, and externalizing phenotypes came from the Semi-Structured Assessment for the Genetics of Alcoholism. EF was measured with the Tower of London and Visual Span Tasks. Polygenic scores (PGS) were computed for alcohol-related and behavioral phenotypes. Cox models estimated associations among PGS, behavior, and alcohol milestones.
Results
Externalizing phenotypes (e.g. conduct disorder symptoms) were associated with future initiation and drinking problems (hazard ratio (HR)⩾1.16). Internalizing (e.g. social anxiety) was associated with hazards for progression from first drink to severe AUD (HR⩾1.55). Initiation and AUD were associated with increased hazards for later depressive symptoms and suicidal ideation (HR⩾1.38), and initiation was associated with increased hazards for future conduct symptoms (HR = 1.60). EF was not associated with alcohol transitions. Drinks per week PGS was linked with increased hazards for alcohol transitions (HR⩾1.06). Problematic alcohol use PGS increased hazards for suicidal ideation (HR = 1.20).
Conclusions
Behavioral markers of addiction vulnerability precede and follow alcohol transitions, highlighting dynamic, bidirectional relationships between behavior and emerging addiction.
Schizotypy represents an index of psychosis-proneness in the general population, often associated with childhood trauma exposure. Both schizotypy and childhood trauma are linked to structural brain alterations, and it is possible that trauma exposure moderates the extent of brain morphological differences associated with schizotypy.
Methods
We addressed this question using data from a total of 1182 healthy adults (age range: 18–65 years old, 647 females/535 males), pooled from nine sites worldwide, contributing to the Enhancing NeuroImaging Genetics through Meta-Analysis (ENIGMA) Schizotypy working group. All participants completed both the Schizotypal Personality Questionnaire Brief version (SPQ-B), and the Childhood Trauma Questionnaire (CTQ), and underwent a 3D T1-weighted brain MRI scan from which regional indices of subcortical gray matter volume and cortical thickness were determined.
Results
A series of multiple linear regressions revealed that differences in cortical thickness in four regions-of-interest were significantly associated with interactions between schizotypy and trauma; subsequent moderation analyses indicated that increasing levels of schizotypy were associated with thicker left caudal anterior cingulate gyrus, right middle temporal gyrus and insula, and thinner left caudal middle frontal gyrus, in people exposed to higher (but not low or average) levels of childhood trauma. This was found in the context of morphological changes directly associated with increasing levels of schizotypy or increasing levels of childhood trauma exposure.
Conclusions
These results suggest that alterations in brain regions critical for higher cognitive and integrative processes that are associated with schizotypy may be enhanced in individuals exposed to high levels of trauma.
Obesity is highly prevalent and disabling, especially in individuals with severe mental illness including bipolar disorders (BD). The brain is a target organ for both obesity and BD. Yet, we do not understand how cortical brain alterations in BD and obesity interact.
Methods:
We obtained body mass index (BMI) and MRI-derived regional cortical thickness, surface area from 1231 BD and 1601 control individuals from 13 countries within the ENIGMA-BD Working Group. We jointly modeled the statistical effects of BD and BMI on brain structure using mixed effects and tested for interaction and mediation. We also investigated the impact of medications on the BMI-related associations.
Results:
BMI and BD additively impacted the structure of many of the same brain regions. Both BMI and BD were negatively associated with cortical thickness, but not surface area. In most regions the number of jointly used psychiatric medication classes remained associated with lower cortical thickness when controlling for BMI. In a single region, fusiform gyrus, about a third of the negative association between number of jointly used psychiatric medications and cortical thickness was mediated by association between the number of medications and higher BMI.
Conclusions:
We confirmed consistent associations between higher BMI and lower cortical thickness, but not surface area, across the cerebral mantle, in regions which were also associated with BD. Higher BMI in people with BD indicated more pronounced brain alterations. BMI is important for understanding the neuroanatomical changes in BD and the effects of psychiatric medications on the brain.
Seabirds are highly threatened, including by fisheries bycatch. Accurate understanding of offshore distribution of seabirds is crucial to address this threat. Tracking technologies revolutionised insights into seabird distributions but tracking data may contain a variety of biases. We tracked two threatened seabirds (Salvin’s Albatross Thalassarche salvini n = 60 and Black Petrel Procellaria parkinsoni n = 46) from their breeding colonies in Aotearoa (New Zealand) to their non-breeding grounds in South America, including Peru, while simultaneously completing seven surveys in Peruvian waters. We then used species distribution models to predict occurrence and distribution using either data source alone, and both data sources combined. Results showed seasonal differences between estimates of occurrence and distribution when using data sources independently. Combining data resulted in more balanced insights into occurrence and distributions, and reduced uncertainty. Most notably, both species were predicted to occur in Peruvian waters during all four annual quarters: the northern Humboldt upwelling system for Salvin’s Albatross and northern continental shelf waters for Black Petrels. Our results highlighted that relying on a single data source may introduce biases into distribution estimates. Our tracking data might have contained ontological and/or colony-related biases (e.g. only breeding adults from one colony were tracked), while our survey data might have contained spatiotemporal biases (e.g. surveys were limited to waters <200 nm from the coast). We recommend combining data sources wherever possible to refine predictions of species distributions, which ultimately will improve fisheries bycatch management through better spatiotemporal understanding of risks.
In this prospective study of mental health, we examine the influence of three interrelated traits — perceived stress, rumination, and daytime sleepiness — and their association with symptoms of anxiety and depression in early adolescence. Given the known associations between these traits, an important objective is to determine the extent to which they may independently predict anxiety/depression symptoms. Twin pairs from the Queensland Twin Adolescent Brain (QTAB) project were assessed on two occasions (N = 211 pairs aged 9−14 years at baseline and 152 pairs aged 10−16 years at follow-up). Linear regression models and quantitative genetic modeling were used to analyze the data. Prospectively, perceived stress, rumination, and daytime sleepiness accounted for 8−11% of the variation in later anxiety/depression; familial influences contributed strongly to these associations. However, only perceived stress significantly predicted change in anxiety/depression, accounting for 3% of variance at follow-up after adjusting for anxiety/depression at baseline, although it did not do so independently of rumination and daytime sleepiness. Bidirectional effects were found between all traits over time. These findings suggest an underlying architecture that is shared, to some degree, by all traits, while the literature points to hypothalamic–pituitary–adrenal (HPA) axis and/or circadian systems as potential sources of overlapping influence and possible avenues for intervention.
The hippocampus is a complex brain structure with key roles in cognitive and emotional processing and with subregion abnormalities associated with a range of disorders and psychopathologies. Here we combine data from two large independent young adult twin/sibling cohorts to obtain the most accurate estimates to date of genetic covariation between hippocampal subfield volumes and the hippocampus as a single volume. The combined sample included 2148 individuals, comprising 1073 individuals from 627 families (mean age = 22.3 years) from the Queensland Twin IMaging (QTIM) Study, and 1075 individuals from 454 families (mean age = 28.8 years) from the Human Connectome Project (HCP). Hippocampal subfields were segmented using FreeSurfer version 6.0 (CA4 and dentate gyrus were phenotypically and genetically indistinguishable and were summed to a single volume). Multivariate twin modeling was conducted in OpenMx to decompose variance into genetic and environmental sources. Bivariate analyses of hippocampal formation and each subfield volume showed that 10%–72% of subfield genetic variance was independent of the hippocampal formation, with greatest specificity found for the smaller volumes; for example, CA2/3 with 42% of genetic variance being independent of the hippocampus; fissure (63%); fimbria (72%); hippocampus-amygdala transition area (41%); parasubiculum (62%). In terms of genetic influence, whole hippocampal volume is a good proxy for the largest hippocampal subfields, but a poor substitute for the smaller subfields. Additive genetic sources accounted for 49%–77% of total variance for each of the subfields in the combined sample multivariate analysis. In addition, the multivariate analyses were sufficiently powered to identify common environmental influences (replicated in QTIM and HCP for the molecular layer and CA4/dentate gyrus, and accounting for 7%–16% of total variance for 8 of 10 subfields in the combined sample). This provides the clearest indication yet from a twin study that factors such as home environment may influence hippocampal volumes (albeit, with caveats).
Transcriptional changes involved in neuronal recovery after sports-related concussion (SRC) may be obscured by inter-individual variation in mRNA expression and nonspecific changes related to physical exertion. Using a co-twin study, the objective of this study was to identify important differences in mRNA expression among a single pair of monozygotic (MZ) twins discordant for concussion. A pair of MZ twins were enrolled as part of a larger study of concussion biomarkers among collegiate athletes. During the study, Twin A sustained SRC, allowing comparison of mRNA expression to the nonconcussed Twin B. Twin A clinically recovered by Day 7. mRNA expression was measured pre-injury and at 6 h and 7 days postinjury using Affymetrix HG-U133 Plus 2.0 microarray. Changes in mRNA expression from pre-injury to each postinjury time point were compared between the twins; differences >1.5-fold were considered important. Kyoto Encyclopedia of Genes and Genomes identified biologic networks associated with important transcripts. Among 38,000 analyzed genes, important changes were identified in 153 genes. The ErbB (epidermal growth factor receptor) signaling pathway was identified as the top transcriptional network from pre-injury to 7 days postinjury. Genes in this pathway with important transcriptional changes included epidermal growth factor (2.41), epiregulin (1.73), neuregulin 1 (1.54) and mechanistic target of rapamycin (1.51). In conclusion, the ErbB signaling pathway was identified as a potential regulator of clinical recovery in a MZ twin pair discordant for SRC. A co-twin study design may be a useful method for identifying important gene pathways associated with concussion recovery.
The Trial Innovation Network (TIN) is a collaborative initiative within the National Center for Advancing Translational Science (NCATS) Clinical and Translational Science Awards (CTSA) Program. To improve and innovate the conduct of clinical trials, it is exploring the uses of gamification to better engage the trial workforce and improve the efficiencies of trial activities. The gamification structures described in this article are part of a TIN website gamification toolkit, available online to the clinical trial scientific community.
Methods:
The game designers used existing electronic trial platforms to gamify the tasks required to meet trial start-up timelines to create friendly competitions. Key indicators and familiar metrics were mapped to scoreboards. Webinars were organized to share and applaud trial and game performance.
Results:
Game scores were significantly associated with an increase in achieving start-up milestones in activation, institutional review board (IRB) submission, and IRB approval times, indicating the probability of completing site activation faster by using games. Overall game enjoyment and feelings that the game did not apply too much pressure appeared to be an important moderator of performance in one trial but had little effect on performance in a second.
Conclusion:
This retrospective examination of available data from gaming experiences may be a first-of-kind use in clinical trials. There are signals that gaming may accelerate performance and increase enjoyment during the start-up phase of a trial. Isolating the effect of gamification on trial outcomes will depend on a larger sampling from future trials, using well-defined, hypothesis-driven statistical analysis plans.
Psychiatric disorders as well as subcortical brain volumes are highly heritable. Large-scale genome-wide association studies (GWASs) for these traits have been performed. We investigated the genetic correlations between five psychiatric disorders and the seven subcortical brain volumes and the intracranial volume from large-scale GWASs by linkage disequilibrium score regression. We revealed weak overlaps between the genetic variants associated with psychiatric disorders and subcortical brain and intracranial volumes, such as in schizophrenia and the hippocampus and bipolar disorder and the accumbens. We confirmed shared aetiology and polygenic architecture across the psychiatric disorders and the specific subcortical brain and intracranial volume.
Losing one's only child is a major traumatic life event that may lead to post-traumatic stress disorder (PTSD); however, the underlying mechanisms of its psychological consequences remain poorly understood. Here, we investigated subregional hippocampal functional connectivity (FC) networks based on resting-state functional magnetic resonance imaging and the deoxyribonucleic acid methylation of the human glucocorticoid receptor gene (NR3C1) in adults who had lost their only child.
Methods
A total of 144 Han Chinese adults who had lost their only child (51 adults with PTSD and 93 non-PTSD adults [trauma-exposed controls]) and 50 controls without trauma exposure were included in this fMRI study (age: 40–67 years). FCs between hippocampal subdivisions (four regions in each hemisphere: cornu ammonis1 [CA1], CA2, CA3, and dentate gyrus [DG]) and methylation levels of the NR3C1 gene were compared among the three groups.
Results
Trauma-exposed adults, regardless of PTSD diagnosis, had weaker positive FC between the left hippocampal CA1, left DG, and the posterior cingulate cortex, and weaker negative FC between the right CA1, right DG, and several frontal gyri, relative to healthy controls. Compared to non-PTSD adults, PTSD adults showed decreased negative FC between the right CA1 region and the right middle/inferior frontal gyri (MFG/IFG), and decreased negative FC between the right DG and the right superior frontal gyrus and left MFG. Both trauma-exposed groups showed lower methylation levels of the NR3C1 gene.
Conclusions
Adults who had lost their only child may experience disrupted hippocampal network connectivity and NR3C1 methylation status, regardless of whether they have developed PTSD.
Childhood maltreatment (CM) plays an important role in the development of major depressive disorder (MDD). The aim of this study was to examine whether CM severity and type are associated with MDD-related brain alterations, and how they interact with sex and age.
Methods
Within the ENIGMA-MDD network, severity and subtypes of CM using the Childhood Trauma Questionnaire were assessed and structural magnetic resonance imaging data from patients with MDD and healthy controls were analyzed in a mega-analysis comprising a total of 3872 participants aged between 13 and 89 years. Cortical thickness and surface area were extracted at each site using FreeSurfer.
Results
CM severity was associated with reduced cortical thickness in the banks of the superior temporal sulcus and supramarginal gyrus as well as with reduced surface area of the middle temporal lobe. Participants reporting both childhood neglect and abuse had a lower cortical thickness in the inferior parietal lobe, middle temporal lobe, and precuneus compared to participants not exposed to CM. In males only, regardless of diagnosis, CM severity was associated with higher cortical thickness of the rostral anterior cingulate cortex. Finally, a significant interaction between CM and age in predicting thickness was seen across several prefrontal, temporal, and temporo-parietal regions.
Conclusions
Severity and type of CM may impact cortical thickness and surface area. Importantly, CM may influence age-dependent brain maturation, particularly in regions related to the default mode network, perception, and theory of mind.
Many studies have identified changes in the brain associated with obsessive–compulsive disorder (OCD), but few have examined the relationship between genetic determinants of OCD and brain variation.
Aims
We present the first genome-wide investigation of overlapping genetic risk for OCD and genetic influences on subcortical brain structures.
Method
Using single nucleotide polymorphism effect concordance analysis, we measured genetic overlap between the first genome-wide association study (GWAS) of OCD (1465 participants with OCD, 5557 controls) and recent GWASs of eight subcortical brain volumes (13 171 participants).
Results
We found evidence of significant positive concordance between OCD risk variants and variants associated with greater nucleus accumbens and putamen volumes. When conditioning OCD risk variants on brain volume, variants influencing putamen, amygdala and thalamus volumes were associated with risk for OCD.
Conclusions
These results are consistent with current OCD neurocircuitry models. Further evidence will clarify the relationship between putamen volume and OCD risk, and the roles of the detected variants in this disorder.
Declaration of interest
The authors have declared that no competing interests exist.
Studies examining productive syntax have used varying elicitation methods and have tended to focus on either young children or adolescents/adults, so we lack an account of syntactic development throughout middle childhood. We describe here the results of an analysis of clause complexity in narratives produced by 354 speakers aged from four years to adulthood using the Expressive, Receptive, and Recall of Narrative Instrument (ERRNI). We show that the number of clauses per utterance increased steadily through this age range. However, the distribution of clause types depended on which of two stories was narrated, even though both stories were designed to have a similar story structure. In addition, clausal complexity was remarkably similar regardless of whether the speaker described a narrative from pictures, or whether the same narrative was recalled from memory. Finally, our findings with the youngest children showed that the task of generating a narrative from pictures may underestimate syntactic competence in those aged below five years.
The ecological value of the stranding record is often challenged due to the complexity in quantifying the biases associated with multiple components of the stranding process. There are biological, physical and social aspects that complicate the interpretation of stranding data particularly at a population level. We show how examination of baseline variability in the historical stranding record can provide useful insights into temporal trends and facilitate the detection of unusual variability in stranding rates. Seasonal variability was examined using harbour porpoise strandings between 1992 and 2014 on the east coast of Scotland. Generalized Additive Mixed modelling revealed a strong seasonal pattern, with numbers increasing from February towards a peak in April. Profiling seasonality this way facilitates detection of unusual variations in stranding frequencies and permits for any change in the incidence of strandings to be quantified by evaluation of the normalized model residuals. Consequently, this model can be used to identify unusual mortality events, and quantify the degree to which they deviate from baseline. With this study we demonstrate that a described baseline in strandings allows the detection of abnormalities at an early stage and can be used as a regional framework of reference for monitoring. This methodology provides means to quantify and partition the variability associated with strandings data and is a useful first step towards improving the stranding record as a management resource.
Field studies were conducted in 1997 and 1998 to evaluate the efficacy of imidazolinone weed management systems and crop tolerance of imidazolinone-tolerant (IT) corn to imazapic. Imazapic (36 and 72 g/ha) was evaluated when applied PRE; early postemergence (EPOST), when corn was at the two- to three-leaf stage; and late postemergence (LPOST), when corn was at the six- to eight-leaf stage. Imazapyr + imazethapyr EPOST and metolachlor + atrazine followed by (fb) primisulfuron LPOST were evaluated as commercial standards. Imazapic at 36 g/ha EPOST controlled johnsongrass, Texas panicum, smellmelon, and ivyleaf and entireleaf morningglory at least 93% when adequate rainfall occurred. Devil's claw was controlled at least 85% with imazapic EPOST or LPOST at either rate. Imazapic at 36 g/ha EPOST and LPOST controlled eclipta 88 and 91%, respectively. Yellow nutsedge was controlled >91% with imazapic LPOST, which was superior to imazapic applied EPOST. Broadleaf signalgrass was controlled 94% with imazapic at 72 g/ha LPOST, which was significantly higher than other herbicide treatments. Imazapic at 36 and 72 g/ha applied PRE under moisture stress resulted in reduced weed control; but when adequate rainfall occurred, weed control was generally similar to that of EPOST and LPOST applications. Imazapic crop response at 72, 105, 140, and 211 g/ha applied at EPOST and LPOST was evaluated in two IT corn hybrids. Crop response varied with soil and environmental conditions and application timings. Imazapic at 72, 105, and 140 g/ha EPOST resulted in crop injury 33 to 55% at 6 wk after planting (WAP) in a coarse soil; however, crop injury decreased to <20% at 12 WAP. Low crop injury (<9%) was observed at 12 WAP in a clay soil. Imazapic applied LPOST resulted in lower crop injury than EPOST application. Corn plant height and yield were not affected by any imazapic treatment.