We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
A central figure in the early years of the French Revolution, Nicolas de Condorcet (1743–94) was active as a mathematician, philosopher, politician and economist. He argued for the values of the Enlightenment, from religious toleration to the abolition of slavery, believing that society could be improved by the application of rational thought. In this essay, first published in 1785, Condorcet analyses mathematically the process of making majority decisions, and seeks methods to improve the likelihood of their success. The work was largely forgotten in the nineteenth century, while those who did comment on it tended to find the arguments obscure. In the second half of the twentieth century, however, it was rediscovered as a foundational work in the theory of voting and societal preferences. Condorcet presents several significant results, among which Condorcet's paradox (the non-transitivity of majority preferences) is now seen as the direct ancestor of Arrow's paradox.