To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We investigate the angular dynamics of a single spheroidal particle with large particle-to-fluid density ratio in simple shear flows, focusing on the influence of the fluid-inertial torque induced by slip velocity. A linear stability analysis is performed to examine how the fluid-inertial torque, viscous shear torque and particle inertia affect the various stable rotation modes, including logrolling, tumbling and aligning modes. As particle inertia increases, bistable or tristable rotation modes emerge depending on initial conditions. For prolate spheroids, three distinct stable-mode regimes are identified, i.e. logrolling, tumbling and tumbling–logrolling (TL). The presence of these modes depends on particle shape and inertia. For oblate spheroids, when the Stokes number is small, we observe monostable modes (logrolling, tumbling and aligning) and bistable modes (TL, aligning–logrolling) varying with different factors. As Stokes number increases, the tristable mode (aligning–tumbling–logrolling) of oblate spheroids appears. These results of the stability analysis further highlight the intricate and significant effect of fluid-inertial torque compared with the results in the absence of fluid-inertial torque. When we apply fluid-inertial torque to the point-particle model, we reproduce the stable rotation modes observed in particle-resolved simulations, which validates the present stability analysis.
The mandible is crucial for human physiological functions, as well as facial esthetics and expressions. The mandibular reconstruction surgery has dual challenges of restoration of both facial form and physiological function, which demands high precision in positioning and orientation of the bone graft. The traditional manual surgery heavily relies on surgeon’s experience. Although the computer image-guided surgery improves the positioning accuracy, the manual manipulation is still difficult to achieve precise spatial orientation of objects, resulting in unsatisfactory intraoperative execution of preoperative surgical design. This paper integrates computer image navigation and robotic technology to assist mandible reconstruction surgery, which empowers surgeons to achieve precise spatial localization and orientation adjustment of bone grafts. The kinematic analysis is conducted, and an improved Iterative Closest Point (ICP) algorithm is proposed for spatial registration. A novel hand-eye calibration method for multi-arm robot and spatial registration of free bone blocks are proposed. The precision experiment of the image-guided navigation and the animal experiments are carried out. The impact of registration point numbers on spatial registration accuracy is analyzed. The results show the feasibility of the robot-assisted navigation for mandibular reconstruction surgery. The robotic system can improve the orientation accuracy of bone blocks to enhance the effectiveness of surgery.
The heating effect of electromagnetic waves in ion cyclotron range of frequencies (ICRFs) in magnetic confinement fusion device is different in different plasma conditions. In order to evaluate the ICRF heating effect in different plasma conditions, we conducted a series of experiments and corresponding TRANSP simulations on the EAST tokamak. Both simulation and experimental results show that the effect of ICRF heating is poor at low core electron density. The decrease in electron density changes the left-handed electric field near the resonant layer, resulting in a significant decrease in the power absorbed by the hydrogen fundamental resonance. However, quite a few experiments must be performed in plasma conditions with low electron density. It is necessary to study how to make ICRF heating best in low electron density plasma. Through a series of simulation scans of the parallel refractive index (n//) of the ICRF antenna, it is concluded that the change of the ICRF antenna n// will lead to the change of the left-handed electric field, which will change the fundamental absorption of ICRF power by the hydrogen minority ions. Fully considering the coupling of ion cyclotron wave at the tokamak boundary and the absorption in the plasma core, optimizing the ICRF antenna structure and selecting appropriate parameters such as parallel refractive index, minority ion concentration, resonance layer position, plasma current and core electron temperature can ensure better heating effect in the ICRF heating experiments in the future EAST upgrade. These results have important implications for the enhancement of the auxiliary heating effect of EAST and other tokamaks.
Depression is closely associated with abnormalities in brain function. Traditional static functional connectivity analyses offer limited insight into the temporal variability of brain activity. Recent advances in dynamic analyses enable a deeper understanding of how depression relates to temporal fluctuations in brain activity.
Methods
This study utilized a large resting-state functional magnetic resonance imaging dataset (N = 696) to examine the association between brain dynamics and depression. Two complementary approaches were employed. Hidden Markov modeling (HMM) was used to identify discrete brain states and quantify their temporal switching patterns; temporal variability was computed within and between large-scale functional networks to capture time-varying fluctuations in functional connectivity.
Results
Depression scores were positively associated with switching rate and negatively associated with maximum fractional occupancy. Furthermore, depression scores were significantly associated with greater temporal variability both within and between networks, with particularly strong effects observed in the default mode network, ventral attention network, and frontoparietal network. Together, these findings suggest that individuals with higher depression scores exhibit more unstable brain dynamics.
Conclusion
Our findings reveal that individuals with higher depression levels exhibit greater instability in brain state transitions and increased temporal variability in functional connectivity across large-scale networks. This instability in brain dynamics may contribute to difficulties in emotion regulation and cognitive control. By capturing whole-brain temporal patterns, this study offers a novel perspective on the neural basis of depression.
This study presents a novel investigation into the vortex dynamics of flow around a near-wall rectangular cylinder based on direct numerical simulation at $Re=1000$, marking the first in-depth exploration of these phenomena. By varying aspect ratios ($L/D = 5$, $10$, $15$) and gap ratios ($G/D = 0.1$, $0.3$, $0.9$), the study reveals the vortex dynamics influenced by the near-wall effect, considering the incoming laminar boundary layer flow. Both $L/D$ and $G/D$ significantly influence vortex dynamics, leading to behaviours not observed in previous bluff body flows. As $G/D$ increases, the streamwise scale of the upper leading edge (ULE) recirculation grows, delaying flow reattachment. At smaller $G/D$, lower leading edge (LLE) recirculation is suppressed, with upper Kelvin–Helmholtz vortices merging to form the ULE vortex, followed by instability, differing from conventional flow dynamics. Larger $G/D$ promotes the formation of an LLE shear layer. An intriguing finding at $L/D = 5$ and $G/D = 0.1$ is the backward flow of fluid from the downstream region to the upper side of the cylinder. At $G/D = 0.3$, double-trailing-edge vortices emerge for larger $L/D$, with two distinct flow behaviours associated with two interactions between gap flow and wall recirculation. These interactions lead to different multiple flow separations. For $G/D = 0.9$, the secondary vortex (SV) from the plate wall induces the formation of a tertiary vortex from the lower side of the cylinder. Double-SVs are observed at $L/D = 5$. Frequency locking is observed in most cases, but is suppressed at $L/D = 10$ and $G/D = 0.9$, where competing shedding modes lead to two distinct evolutions of the SV.
The emotion regulation network (ERN) in the brain provides a framework for understanding the neuropathology of affective disorders. Although previous neuroimaging studies have investigated the neurobiological correlates of the ERN in major depressive disorder (MDD), whether patients with MDD exhibit abnormal functional connectivity (FC) patterns in the ERN and whether the abnormal FC in the ERN can serve as a therapeutic response signature remain unclear.
Methods
A large functional magnetic resonance imaging dataset comprising 709 patients with MDD and 725 healthy controls (HCs) recruited across five sites was analyzed. Using a seed-based FC approach, we first investigated the group differences in whole-brain resting-state FC of the 14 ERN seeds between participants with and without MDD. Furthermore, an independent sample (45 MDD patients) was used to evaluate the relationship between the aforementioned abnormal FC in the ERN and symptom improvement after 8 weeks of antidepressant monotherapy.
Results
Compared to the HCs, patients with MDD exhibited aberrant FC between 7 ERN seeds and several cortical and subcortical areas, including the bilateral middle temporal gyrus, bilateral occipital gyrus, right thalamus, calcarine cortex, middle frontal gyrus, and the bilateral superior temporal gyrus. In an independent sample, these aberrant FCs in the ERN were negatively correlated with the reduction rate of the HAMD17 score among MDD patients.
Conclusions
These results might extend our understanding of the neurobiological underpinnings underlying unadaptable or inflexible emotional processing in MDD patients and help to elucidate the mechanisms of therapeutic response.
In contemporary neuroimaging studies, it has been observed that patients with major depressive disorder (MDD) exhibit aberrant spontaneous neural activity, commonly quantified through the amplitude of low-frequency fluctuations (ALFF). However, the substantial individual heterogeneity among patients poses a challenge to reaching a unified conclusion.
Methods
To address this variability, our study adopts a novel framework to parse individualized ALFF abnormalities. We hypothesize that individualized ALFF abnormalities can be portrayed as a unique linear combination of shared differential factors. Our study involved two large multi-center datasets, comprising 2424 patients with MDD and 2183 healthy controls. In patients, individualized ALFF abnormalities were derived through normative modeling and further deconstructed into differential factors using non-negative matrix factorization.
Results
Two positive and two negative factors were identified. These factors were closely linked to clinical characteristics and explained group-level ALFF abnormalities in the two datasets. Moreover, these factors exhibited distinct associations with the distribution of neurotransmitter receptors/transporters, transcriptional profiles of inflammation-related genes, and connectome-informed epicenters, underscoring their neurobiological relevance. Additionally, factor compositions facilitated the identification of four distinct depressive subtypes, each characterized by unique abnormal ALFF patterns and clinical features. Importantly, these findings were successfully replicated in another dataset with different acquisition equipment, protocols, preprocessing strategies, and medication statuses, validating their robustness and generalizability.
Conclusions
This research identifies shared differential factors underlying individual spontaneous neural activity abnormalities in MDD and contributes novel insights into the heterogeneity of spontaneous neural activity abnormalities in MDD.
Bilinguals may choose to speak a language either at their own will or in response to an external demand, but the underlying neural mechanisms in the two contexts is poorly understood. In the present study, Chinese–English bilinguals named pairs of pictures in three conditions: during forced-switch, the naming language altered between pictures 1 and 2. During non-switch, the naming language used was the same. During free-naming, either the same or different languages were used at participants' own will. While behavioural switching costs were observed during free-naming and forced-switching, neuroimaging results showed that forced language selection (i.e., forced-switch and non-switch) is associated with left-lateralized frontal activations, which have been implicated in inhibitory control. Free language selection (i.e., free-naming), however, was associated with fronto-parietal activations, which have been implicated in self-initiated behaviours. These findings offer new insights into the neural differentiation of language control in forced and free language selection contexts.
The numerical investigation focuses on the flow patterns around a rectangular cylinder with three aspect ratios ($L/D=5$, $10$, $15$) at a Reynolds number of $1000$. The study delves into the dynamics of vortices, their associated frequencies, the evolution of the boundary layer and the decay of the wake. Kelvin–Helmholtz (KH) vortices originate from the leading edge (LE) shear layer and transform into hairpin vortices. Specifically, at $L/D=5$, three KH vortices merge into a single LE vortex. However, at $L/D=10$ and $15$, two KH vortices combine to form a LE vortex, with the rapid formation of hairpin vortex packets. A fractional harmonic arises due to feedback from the split LE shear layer moving upstream, triggering interaction with the reverse flow. Trailing edge (TE) vortices shed, creating a Kármán-like street in the wake. The intensity of wake oscillation at $L/D=5$ surpasses that in the other two cases. Boundary layer transition occurs after the saturation of disturbance energy for $L/D=10$ and $15$, but not for $L/D=5$. The low-frequency disturbances are selected to generate streaks inside the boundary layer. The TE vortex shedding induces the formation of a favourable pressure gradient, accelerating the flow and fostering boundary layer relaminarization. The self-similarity of the velocity defect is observed in all three wakes, accompanied by the decay of disturbance energy. Importantly, the decrease in the shedding frequency of LE (TE) vortices significantly contributes to the overall decay of disturbance energy. This comprehensive exploration provides insights into complex flow phenomena and their underlying dynamics.
Rotation and orientation of non-spherical particles in a fluid flow depend on the hydrodynamic torque they experience. However, little is known about the effect of the fluid inertial torque on the dynamics of tiny inertial spheroids in turbulent channel flows, as only Jeffery torque has been considered in previous studies by point-particle direct numerical simulations. In this study, we investigate the rotation and orientation of tiny spheroids with both fluid inertial torque and Jeffery torque in a turbulent channel flow. By comparing with the case in the absence of fluid inertial torque, we find that the rotational and orientational dynamics of spheroids is significantly affected by the fluid inertial torque when the Stokes number, which is non-dimensionalized by fluid viscous time scale, is larger than the critical value $St_c\approx 2$, indicating that the fluid inertial torque is non-negligible for most particle cases considered in earlier studies. In contrast to the earlier findings considering only Jeffery torque (Challabotla et al., J. Fluid Mech., vol. 776, 2015, p. R2), we find that prolate (oblate) spheroids with a large Stokes number tend to tumble (spin) in the streamwise–wall-normal plane in a thinner region near the wall due to the presence of the fluid inertial torque. Approaching the channel centre, the flow shear gradually vanishes, but the velocity difference between local fluid and particles is still pronounced and increasing as particle inertia grows. As a result, in the core region, fluid inertial torque is dominant and drives the particles to align with its broad side normal to the streamwise direction rather than a random orientation observed in earlier studies without fluid inertial torque. Meanwhile, the presence of fluid inertial torque enhances the tumbling rates of spheroids in the core region. In addition, the effect of fluid inertial force on the dynamics of spheroids is also examined in this study, but the results indicate the effect of fluid inertial force is weak. Our findings imply the importance of fluid inertial torque in modelling the dynamics of inertial non-spherical particles in turbulent channel flows.
Multilayer dielectric gratings (MLDGs) are crucial for pulse compression in picosecond–petawatt laser systems. Bulged nodular defects, embedded in coating stacks during multilayer deposition, influence the lithographic process and performance of the final MLDG products. In this study, the integration of nanosecond laser conditioning (NLC) into different manufacturing stages of MLDGs was proposed for the first time on multilayer dielectric films (MLDFs) and final grating products to improve laser-induced damage performance. The results suggest that the remaining nodular ejection pits introduced by the two protocols exhibit a high nanosecond laser damage resistance, which remains stable when the irradiated laser fluence is more than twice the nanosecond-laser-induced damage threshold (nanosecond-LIDT) of the unconditioned MLDGs. Furthermore, the picosecond-LIDT of the nodular ejection pit conditioned on the MLDFs was approximately 40% higher than that of the nodular defects, and the loss of the grating structure surrounding the nodular defects was avoided. Therefore, NLC is an effective strategy for improving the laser damage resistance of MLDGs.
Dynamic interpersonal therapy (DIT) is a brief, structured psychodynamic psychotherapy with demonstrated efficacy in treating major depressive disorder (MDD). The aim of the study was to determine whether DIT is an acceptable and efficacious treatment for MDD patients in China.
Method
Patients were randomized to 16-week treatments with either DIT plus antidepressant medication (DIT + ADM; n = 66), general supportive therapy plus antidepressant medication (GST + ADM; n = 75) or antidepressant medication alone (ADM; n = 70). The Hamilton Depression Rating Scale (HAMD) administered by blind raters was the primary efficacy measure. Assessments were completed during the acute 16-week treatment and up to 12-month posttreatment.
Results
The group × time interaction was significant for the primary outcome HAMD (F = 2.900, df1 = 10, df2 = 774.72, p = 0.001) in the acute treatment phase. Pairwise comparisons showed a benefit of DIT + ADM over ADM at weeks 12 [least-squares (LS) mean difference = −3.161, p = 0.007] and 16 (LS mean difference = −3.237, p = 0.004). Because of the unexpected high attrition during the posttreatment follow-up phase, analyses of follow-up data were considered exploratory. Differences between DIT + ADM and ADM remained significant at the 1-, 6-, and 12-month follow-up (ps range from 0.001 to 0.027). DIT + ADM had no advantage over GST + ADM during the acute treatment phase. However, at the 12-month follow-up, patients who received DIT remained less depressed.
Conclusions
Acute treatment with DIT or GST in combination with ADM was similarly efficacious in reducing depressive symptoms and yielded a better outcome than ADM alone. DIT may provide MDD patients with long-term benefits in symptom improvement but results must be viewed with caution.
Multilayer dielectric gratings typically remove multiple-grating pillars after picosecond laser irradiation; however, the dynamic formation process of the removal is still unclear. In this study, the damage morphologies of multilayer dielectric gratings induced by an 8.6-ps laser pulse were closely examined. The damage included the removal of a single grating pillar and consecutive adjacent grating pillars and did not involve the destruction of the internal high-reflection mirror structure. Comparative analysis of the two damage morphological characteristics indicated the removal of adjacent pillars was related to an impact process caused by the eruption of localized materials from the left-hand pillar, exerting impact pressure on its adjacent pillars and eventually resulting in multiple pillar removal. A finite-element strain model was used to calculate the stress distribution of the grating after impact. According to the electric field distribution, the eruptive pressure of the dielectric materials after ionization was also simulated. The results suggest that the eruptive pressure resulted in a stress concentration at the root of the adjacent pillar that was sufficient to cause damage, corresponding to the experimental removal of the adjacent pillar from the root. This study provides further understanding of the laser-induced damage behavior of grating pillars and some insights into reducing the undesirable damage process for practical applications.
Despite increasing knowledge on the neuroimaging patterns of eating disorder (ED) symptoms in non-clinical populations, studies using whole-brain machine learning to identify connectome-based neuromarkers of ED symptomatology are absent. This study examined the association of connectivity within and between large-scale functional networks with specific symptomatic behaviors and cognitions using connectome-based predictive modeling (CPM).
Methods
CPM with ten-fold cross-validation was carried out to probe functional networks that were predictive of ED-associated symptomatology, including body image concerns, binge eating, and compensatory behaviors, within the discovery sample of 660 participants. The predictive ability of the identified networks was validated using an independent sample of 821 participants.
Results
The connectivity predictive of body image concerns was identified within and between networks implicated in cognitive control (frontoparietal and medial frontal), reward sensitivity (subcortical), and visual perception (visual). Crucially, the set of connections in the positive network related to body image concerns identified in one sample was generalized to predict body image concerns in an independent sample, suggesting the replicability of this effect.
Conclusions
These findings point to the feasibility of using the functional connectome to predict ED symptomatology in the general population and provide the first evidence that functional interplay among distributed networks predicts body shape/weight concerns.
Given a graph $H$ and a positive integer $n$, the Turán number$\mathrm{ex}(n,H)$ is the maximum number of edges in an $n$-vertex graph that does not contain $H$ as a subgraph. A real number $r\in (1,2)$ is called a Turán exponent if there exists a bipartite graph $H$ such that $\mathrm{ex}(n,H)=\Theta (n^r)$. A long-standing conjecture of Erdős and Simonovits states that $1+\frac{p}{q}$ is a Turán exponent for all positive integers $p$ and $q$ with $q\gt p$.
In this paper, we show that $1+\frac{p}{q}$ is a Turán exponent for all positive integers $p$ and $q$ with $q \gt p^{2}$. Our result also addresses a conjecture of Janzer [18].
Neuroimaging studies on major depressive disorder (MDD) have identified an extensive range of brain structural abnormalities, but the exact neural mechanisms associated with MDD remain elusive. Most previous studies were performed with voxel- or surface-based morphometry which were univariate methods without considering spatial information across voxels/vertices.
Methods
Brain morphology was investigated using voxel-based morphometry (VBM) and source-based morphometry (SBM) in 1082 MDD patients and 990 healthy controls (HCs) from the REST-meta-MDD Consortium. We first examined group differences in regional grey matter (GM) volumes and structural covariance networks between patients and HCs. We then compared first-episode, drug-naïve (FEDN) patients, and recurrent patients. Additionally, we assessed the effects of symptom severity and illness duration on brain alterations.
Results
VBM showed decreased GM volume in various regions in MDD patients including the superior temporal cortex, anterior and middle cingulate cortex, inferior frontal cortex, and precuneus. SBM returned differences only in the prefrontal network. Comparisons between FEDN and recurrent MDD patients showed no significant differences by VBM, but SBM showed greater decreases in prefrontal, basal ganglia, visual, and cerebellar networks in the recurrent group. Moreover, depression severity was associated with volumes in the inferior frontal gyrus and precuneus, as well as the prefrontal network.
Conclusions
Simultaneous application of VBM and SBM methods revealed brain alterations in MDD patients and specified differences between recurrent and FEDN patients, which tentatively provide an effective multivariate method to identify potential neurobiological markers for depression.
The present study evaluated effects of dietary supplementation with tryptophan (Trp) on muscle growth, protein synthesis and antioxidant capacity in hybrid catfish Pelteobagrus vachelli♀ × Leiocassis longirostris♂. Fish were fed six different diets containing 2·6 (control), 3·1, 3·7, 4·2, 4·7 and 5·6 g Trp/kg diet for 56 d, respectively. Results showed that dietary Trp significantly (1) improved muscle protein content, fibre density and frequency of fibre diameter; (2) up-regulated the mRNA levels of PCNA, myf5, MyoD1, MyoG, MRF4, IGF-I, IGF-II, IGF-IR, PIK3Ca, TOR, 4EBP1 and S6K1; (3) increased phosphorylation levels of AKT, TOR and S6K1; (4) decreased contents of MDA and PC, and increased activities of CAT, GST, GR, ASA and AHR; (5) up-regulated mRNA levels of CuZnSOD, CAT, GST, GPx, GCLC and Nrf2, and decreased Keap1 mRNA level; (6) increased nuclear Nrf2 protein level and the intranuclear antioxidant response element-binding ability, and reduced Keap1 protein level. These results indicated that dietary Trp improved muscle growth, protein synthesis as well as antioxidant capacity, which might be partly related to myogenic regulatory factors, IGF/PIK3Ca/AKT/TOR and Keap1/Nrf2 signalling pathways. Finally, based on the quadratic regression analysis of muscle protein and MDA contents, the optimal Trp requirements of hybrid catfish (21·82–39·64 g) were estimated to be 3·94 and 3·93 g Trp/kg diet (9·57 and 9·54 g/kg of dietary protein), respectively.
The South Qinling block, a segment of the Yangtze craton involved in the Qinling–Dabie orogen, is critical for understanding the tectonic evolution of eastern China. However, the tectonic setting of the South Qinling block and the northern margin of the Yangtze block during middle Neoproterozoic time has long been the subject of debate, with two distinctly different models (continental rift or volcanic arc) proposed. Here, a comprehensive study of zircon U–Pb geochronology and geochemistry has been carried out on the Chengwan granitic pluton from the Suizao terrane in the South Qinling block. The granites are monzogranite and syenogranite in lithology, and are mainly composed of potash feldspar, quartz, plagioclase and biotite. This suite has long been regarded as a Palaeozoic magmatic pluton, but zircon U–Pb ages of 809 ± 9 Ma and 816 ± 4 Ma are obtained in this study. The granites are metaluminous to strongly peraluminous with high alkali contents, and exhibit highly fractionated features, including high SiO2, low Zr/Hf ratios, rare earth element tetrad effects and enrichment of K and Rb. They show Hf–Nd isotopic decoupling, which may be genetically related to their petrogenetic process. Based on the geochemical features and the positive εHf(t) values of the zircons, it is indicated that the granites may have been derived from partial melting of juvenile tonalitic rocks by biotite breakdown under fluid-absent conditions. The Chengwan granite geochemically belongs to the A2-subtype granites, suggesting that it might have formed in a post-orogenic tectonic setting. The highly fractionated A-type granite in this study may represent extensional collapse shortly after the collisional events in the South Qinling block, and thus indicate a tectonic regime switch, from compression to extension, as early as middle Neoproterozoic time. Integrating our new data with documented magmatic, metamorphic and sedimentary events during middle Neoproterozoic time in the region may support a continental rift model, and argues against arc models.
The dependence of fishbone cycle on energetic particle intensity has been investigated in EAST low-magnetic-shear plasmas. It is observed that the fishbone mode growth rate, saturation amplitude as well as fishbone cycle frequency clearly increase with increasing neutral beam injection (NBI) power. Moreover, enhanced electron density and temperature perturbations as well as energetic particle loss were observed with greater injected NBI power. Simulation results using M3D-K code show that as the NBI power increases, the resonant frequency and the energy of the resonant particles become higher, and the saturation amplitude of the mode also changes, due to the non-perturbative energetic particle contribution. The relationship between the calculated energetic particle pressure ratio and fishbone cycle frequency is obtained as ${f_{\textrm{FC}}} = 2.2{(1000{\beta _{\textrm{ep,calc}}} - 0.1)^{5.9 \pm 0.5}}$. Results consistent with the experimental observations have been achieved based on a predator–prey model.
Having enterprises engaged in environmentally friendly behavior is an important part of reducing negative environmental impacts. This study makes a quantitative analysis against the backdrop of China's transitional economic system. The results show that politically-connected enterprises significantly reduce environmental expenditure, but this only holds for state-owned enterprises; private enterprises with political connections spend significantly more. Analysis of the efficiency of environmental expenditure indicates that, for private enterprises, environmental spending is used as a way to maintain political connections, with rent-seeking as the likely motivation. Politically-connected private enterprises have not reduced their emissions to the same extent as state-owned enterprises, despite increased expenditure. Given the scale of environmental degradation in China during a period of massive economic and social upheaval, the results of this analysis provide a quantitative case for policy change: governments should shift focus to the results that environmental spending produces.