We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Responding to the latest developments in rock physics research, this popular reference book has been thoroughly updated while retaining its comprehensive coverage of the fundamental theory, concepts, and laboratory results. It brings together the vast literature from the field to address the relationships between geophysical observations and the underlying physical properties of Earth materials - including water, hydrocarbons, gases, minerals, rocks, ice, magma and methane hydrates. This third edition includes expanded coverage of topics such as effective medium models, viscoelasticity, attenuation, anisotropy, electrical-elastic cross relations, and highlights applications in unconventional reservoirs. Appendices have been enhanced with new materials and properties, while worked examples (supplemented by online datasets and MATLAB® codes) enable readers to implement the workflows and models in practice. This significantly revised edition will continue to be the go-to reference for students and researchers interested in rock physics, near-surface geophysics, seismology, and professionals in the oil and gas industries.
In this section, we use the symbol s to represent the frequency, or Fourier transform variable, following the terminology of Bracewell (1965). When x refers to time, the symbol f is often used for frequency instead of s; when x refers to space, the symbol k is often used for spatial frequency instead of s. Do not confuse this with the use of s when defining the Laplace transform (Section 1.3) or S when defining the analytic signal (Section 1.2).
Spheres are often used as idealized representations of grains in unconsolidated and poorly consolidated sands. They provide a means of quantifying geometric relations, such as the porosity and the coordination number, as functions of packing and sorting. Using spheres also allows an analytical treatment of mechanical grain interactions under stress. Recent research also started to reveal how the properties of the granular medium change as particle shapes differ from perfect spheres.
Nur et al. (1991, 1995) and other workers have championed the simple, if not obvious, idea that the P and S velocities of rocks should trend between the velocities of the mineral grains in the limit of low porosity and the values for a mineral–pore-fluid suspension in the limit of high porosity.
If we wish to predict the effective dielectric permittivity ε of a mixture of phases theoretically, we generally need to specify: (1) the volume fractions of the various phases, (2) the dielectric permittivity of the various phases, and (3) the geometric details of how the phases are arranged relative to each other.
Biot (1956) derived theoretical formulas for predicting the frequency-dependent seismic velocities of saturated rocks in terms of the dry-rock properties. His formulation incorporates some, but not all, of the mechanisms of viscous and inertial interaction between the pore fluid and the mineral matrix of the rock.
It was established experimentally by Darcy () that the fluid flow rate in a fluid-saturated porous medium is linearly related to the pressure gradient by the following equation
If we wish to predict theoretically the effective elastic moduli of a mixture of grains and pores, we generally need to specify: (1) the volume fractions of the various phases, (2) the elastic moduli of the various phases, and (3) the geometric details of how the phases are arranged relative to each other. If we specify only the volume fractions and the constituent moduli, the best we can do is predict the upper and lower bounds (shown schematically in Figure 4.1.1).
The Rock Physics Handbook addresses the relationships between geophysical observations and the underlying physical properties of rocks. It distills a vast quantity of background theory and laboratory results into a series of concise chapters that provide practical solutions to problems in geophysical data interpretation. This expanded second edition presents major new chapters on statistical rock physics and velocity-porosity-clay models for clastic sediments. Other new and expanded topics include anisotropic seismic signatures, borehole waves, models for fractured media, poroelastic models, and attenuation models. This new edition also provides an enhanced set of appendices with key empirical results, data tables, and an atlas of reservoir rock properties - extended to include carbonates, clays, gas hydrates, and heavy oils. Supported by a website hosting MATLAB® routines for implementing the various rock physics formulas, this book is a vital resource for advanced students and university faculty, as well as petroleum industry geophysicists and engineers.
Quantitative Seismic Interpretation demonstrates how rock physics can be applied to predict reservoir parameters, such as lithologies and pore fluids, from seismically derived attributes. The authors provide an integrated methodology and practical tools for quantitative interpretation, uncertainty assessment, and characterization of subsurface reservoirs using well-log and seismic data. They illustrate the advantages of these new methodologies, while providing advice about limitations of the methods and traditional pitfalls. This book is aimed at graduate students, academics and industry professionals working in the areas of petroleum geoscience and exploration seismology. It will also interest environmental geophysicists seeking a quantitative subsurface characterization from shallow seismic data. The book includes problem sets and a case-study, for which seismic and well-log data, and MATLAB® codes are provided on a website (http://www.cambridge.org/9780521151351). These resources will allow readers to gain a hands-on understanding of the methodologies.