To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Turbulence amplification is crucial in shock-wave/turbulent boundary layer interaction (SWTBLI). To examine the impact of interaction intensity on turbulence amplification and inter-component energy transfer, direct numerical simulations of impinging oblique shock reflections at strong ($37^\circ$) and weak ($33.2^\circ$) incident angles are conducted. The results indicate that strong interaction generates a larger permanent separation zone, featuring the unique ‘oblique platform’ in Reynolds stress peaks and ‘secondary turbulence amplification’ downstream. Reynolds stress budget and spanwise spectral analyses reveal that $\widetilde {u^{\prime \prime}u^{\prime \prime}}$ and $-\!\widetilde{\ u^{\prime\prime}v^{\prime\prime}}$ amplify primarily by production terms. $u''$, $v''$ and $w''$ represent the streamwise, wall-normal and spanwise velocity fluctuations. At the investigated Reynolds number, deceleration effect dominates the initial amplification of $\widetilde {u^{\prime \prime}u^{\prime \prime}}$, influencing multi-scale wall-bounded turbulence structures, while shear effect remains active along the shear layer and may primarily affects streaky structures. The initial amplification of $-\!\widetilde{\ u^{\prime\prime}v^{\prime\prime}}$ is driven by the adverse pressure gradient, which reshapes the velocity profile and affects the wall-normal velocity. The primary energy for $\!\widetilde{\ v^{\prime\prime}v^{\prime\prime}}$ and $\widetilde {w^{\prime \prime}w^{\prime \prime}}$ amplification originates from $\widetilde{ u^{\prime \prime}u^{\prime \prime}}$ via the pressure-strain term. The delayed amplification of $\!\widetilde{\ v^{\prime\prime}v^{\prime\prime}}$ is influenced by its production term and energy redistribution, with $\widetilde {w^{\prime \prime}w^{\prime \prime}}$ exhibiting higher spectral consistency with $\widetilde {u^{\prime \prime}u^{\prime \prime}}$ and receiving more energy. In strong interaction, the ‘oblique platform’ serves as a stable dissipation region, formed by increased separation–incident shock distance, characterised by progressively concentrated stress spectra and the transition to large-scale streaks. The downstream ‘secondary amplification’ process resembles the initial amplification near the separation shock foot, driven by intermittent compression waves that strengthen shear instabilities and the deceleration effect. These findings detail the streamwise stress evolution, providing a more comprehensive turbulence amplification mechanism in SWTBLI.
Pebrine disease, caused by Nosema bombycis (Nb) infection in silkworms, is a severe and long-standing disease that threatens sericulture. As parasitic pathogens, a complex relationship exists between microsporidia and their hosts at the mitochondrial level. Previous studies have found that the translocator protein (TSPO) is involved in various biological functions, such as membrane potential regulation, mitochondrial autophagy, immune responses, calcium ion channel regulation, and cell apoptosis. In the present study, we found that TSPO expression in silkworms (BmTSPO) was upregulated following Nb infection, leading to an increase in cytoplasmic calcium, adenosine triphosphate, and reactive oxygen species levels. Knockdown and overexpression of BmTSPO resulted in the promotion and inhibition of Nb proliferation, respectively. We also demonstrated that the overexpression of BmTSPO promotes host cell apoptosis and significantly increases the expression of genes involved in the immune deficiency and Janus kinase-signal transducer and the activator of the transcription pathways. These findings suggest that BmTSPO activates the innate immune signalling pathway in silkworms to regulate Nb proliferation. Targeting TSPO represents a promising approach for the development of new treatments for microsporidian infections.
The unsteady mechanism of unstart flow for an inlet with rectangular-to-elliptical shape transition (REST) under the off-design condition at a Mach of 4 is investigated using the delay detached eddy simulation method. With the help of numerical simulations, the unsteady dynamics, especially the low-frequency characteristics of the REST inlet unstart flow, as well as the self-sustaining mechanism, is investigated. The instantaneous flow illustrates the unsteady phenomena of the REST unstart flow, including the interaction between the cowl-closure leading edge (CLE) shock and the shear layer, breathing of the separation bubble, flapping of the separation shock, instability of the shear layer and vortex shedding along the shear layer. The spectral analysis reveals that the lower frequency dynamics is associated with the breathing of the separation bubble and the flapping motion of the separation shock wave, while the higher frequency is related to the instability of the shear layer affected by cowl-closure leading edge shock and the formation of shedding vortices. Further, coherence analysis shows that the contribution of these flow structures dominating the low-frequency dynamics couple with each other. Based on the dynamic mode decomposition results, the characteristics that contribute to the unsteady behaviour of unstart flow are summarized. The streamwise vortices downstream of the separation and the shedding vortices are believed to be the main driving force of the global low-frequency unsteadiness of the REST inlet unstart flow under the off-design condition. Moreover, the CLE shock plays an important role in the process during the dominant flow structure conversion from the backflow within the separation bubble into elongated streamwise structures.
A highly compressive effect would suppress the mixing of the shear layer in a convex wall jet. The spanwise distributed protrusions at the nozzle lip are employed to achieve mixing enhancement in this study. The mixing characteristics and enhancement mechanisms are numerically investigated by the delayed detached-eddy simulation method based on the two-equation shear-stress transport model. A widely applicable flow spatiotemporal analysis method, called proper orthogonal decomposition (POD), is used to gain further insight into the dynamical behaviours of the flow instability mode. The results reveal that the centrifugal effect maintains and amplifies the initial perturbations induced by the spanwise distributed heterogeneities, resulting in forced streamwise vortices. The instabilities induced by the streamwise vortices significantly increase the growth rate of the jet half-width and the shear layer vorticity thickness. The spanwise wavelength of the streamwise vortices is consistent with the spanwise distributed forced excitation. In addition, the spanwise meandering motion of the streamwise vortices is observed, which is usually associated with the streamwise travelling wave. This is further confirmed by the POD analysis of the spanwise velocity fluctuation in both stream-radial and stream-span sections. Also, the spatial distributions of the POD modes with the highest energy provide information on the secondary instability modes. Both sinuous and varicose types of disturbances are observed in the unforced jet, whereas the forced jet seems to be dominated by the sinuous type instability, which is more easily excited than the varicose type instability. Moreover, the turbulence intensity in the forced jet is also significantly enhanced as expected due to the earlier and stronger streamwise vortices and associated instabilities. The enhanced turbulent characteristics of the highly compressible condition tend to be isotropic, whereas in the unforced jet, it is anisotropic due to the strong compressibility suppressing the spanwise turbulent fluctuations.
Maternal syphilis not only seriously affects the quality of life of pregnant women themselves but also may cause various adverse pregnancy outcomes (APOs). This study aimed to analyse the association between the related factors and APOs in maternal syphilis. 7,030 pregnant women infected with syphilis in Henan Province between January 2016 and December 2022 were selected as participants. Information on their demographic and clinical characteristics, treatment status, and pregnancy outcomes was collected. Multivariate logistic regression models and chi-squared automatic interaction detector (CHAID) decision tree models were used to analyse the factors associated with APOs. The multivariate logistic regression results showed that the syphilis infection history (OR = 1.207, 95% CI, 1.035–1.409), the occurrence of abnormality during pregnancy (OR = 5.001, 95% CI, 4.203–5.951), not receiving standard treatment (OR = 1.370, 95% CI, 1.095–1.716), not receiving any treatment (OR = 1.313, 95% CI, 1.105–1.559), and a titre ≥1:8 at diagnosis (OR = 1.350, 95%CI, 1.079–1.690) and before delivery (OR = 1.985, 95%CI, 1.463–2.694) were risk factors. A total of six influencing factors of APOs in syphilis-infected women were screened using the CHAID decision tree model. Integrated prevention measures such as early screening, scientific eugenics assessment, and standard syphilis treatment are of great significance in reducing the incidence of APOs for pregnant women infected with syphilis.
The supersonic jet over a convex wall is numerically investigated using the delayed detached-eddy simulation method based on the two-equation shear-stress transport model. The current study focuses on instabilities, turbulent statistics and the influence of compressibility effects. A widely applicable data-driven modal decomposition approach, called dynamic mode decomposition is used to gain further insight into the dynamical behaviours of the flow. The results demonstrate that streamwise vortices caused by the centrifugal force play significant roles in shear layer instabilities. The spanwise modulation of the streamwise vortices induces inflection points in the flow, resulting in secondary shear layer instability. This instability, which is sustained by the side-to-side sway of the streamwise vortices to obtain energy from the mean flow, dominates the rapid growth of the shear layer and turbulent stresses in the growth region. In the self-similar region, there is not only self-similarity of velocity profiles, but also self-similarity of normalized turbulent stresses. The compressibility effect significantly inhibits the growth of the shear layer and the formation of large-scale streamwise vortices. The investigation of turbulent stresses in the self-similar region with increasing convective Mach number indicates that the compressibility effect enhances turbulence anisotropy.
In this article, the electron trapping and acceleration in the wake field driven by an ultrarelativistic hollow electron beam is studied. When the hollow driver injects into plasma, there is a doughnut-shaped electron bubble formed because of the existence of a special ‘backflow’ beam in the centre of the electron bubble. At the same time, there is a transverse convergence of the hollow driver, which leads to the weakening of the backflow beam. This results in a local electron density transition at the rear of the bubble. During this process, there is an expansion of the longitudinal electron bubble size, and a bunch of background electrons is trapped by the wake field at the rear of the bubble. The tracks for the trapped electrons show that there are two sources: one is from the bubble sheath and the other is from the unique backflow beam. In the particle-in-cell simulation where the driving beam has initial energy of $1.0$ GeV per particle, the trapped beam can be accelerated to energy of more than $1.5$ GeV per particle and the corresponding transformer ratio is $1.5$. With the increase of driving beam energy up to $40.0$ GeV, a transformer ratio of $1.4$ still can be achieved. By adjusting the hollow beam density, it is possible to control the trapped beam charge value and beam quality, such as its energy spread and transverse emittance.
The emerging large-scale production units (LSPUs) have become increasingly important in Chinese agricultural production and rural transformation due to rapid industrialization and urbanization. Based on household and plot-level data from Jiangsu and Jiangxi Provinces in China, this study provides insights into the farming systems of these LSPUs and examines how contract type, as a proxy for land tenure security, impacts on the production unit's soil-improving investments. Results from the two-stage control function approach show that the written nature of contracts positively affects the application of organic fertilizer and green manure on rented-in plots. Descriptive analysis also confirms the collateralization effect of contract type by showing that plots that are used as collateral for credit are characterized by written contracts. Policies facilitating LSPUs' access to farmland with more formal contracts may therefore play an important role in improving soil quality and land productivity.
The flow over a square cylinder controlled by a slot synthetic jet positioned at the front surface is investigated experimentally at different excitation frequencies. The Reynolds number based on the free-stream velocity and the side length of the square cylinder is 1000. The flow visualization was conducted using the laser-induced fluorescence technique. The velocity fields upstream and downstream of the square cylinder were measured synchronously with the two-dimensional time-resolved particle image velocimetry technique. Both the evolution of vortex structures and the characteristic frequencies of upstream and downstream flow fields are presented. The flow dynamics vary significantly with the excitation frequency at a fixed stroke length. During one excitation cycle, the synthetic jet vortex pair deflects to one side and later swings to the other side at a quite small excitation frequency of $f_{e}/f_{0}=0.6$, while it only deflects toward one side and does not turn to the other side at $f_{e}/f_{0}=1.0$. Compared with the natural case, the wake characteristics for the above two cases are not changed much by the synthetic jet adopted. At a moderate excitation frequency of $f_{e}/f_{0}=2.0$, the synthetic jet deflects upwards and downwards alternatively. The upstream flow field has a dominant frequency identical to half of the excitation frequency. Under the perturbations of the synthetic jet, two wake vortex pairs are formed per shedding cycle with a shedding frequency equal to that of the square cylinder without control. At a higher excitation frequency of $f_{e}/f_{0}=3.4$, the synthetic jet keeps deflecting to one side, and the upstream flow field is governed by the excitation frequency. The flow separation on the deflected side is suppressed effectively, and no periodic vortex shedding can be observed in the wake. Statistically, the velocity profiles also change with control. The recirculation bubble length in the wake is shortened, and the time-averaged velocity fluctuation is weakened remarkably. The control effects of the synthetic jet and the continuous jet are compared in this paper when placed at the front surface of a square cylinder.
Depictions of human faces and rice-crop images found at the Jiangjunya rock-art site in Lianyungang City, Jiangsu Province, China, reveal entangling relationships between spiritual and economic aspects. Drawing on the relational ecology model and animist ontology theory, the author provides an analysis of the Jiangjunya rock art in its economic, social, spiritual and historical contexts, proposing that prehistoric farmers along China's east coast perceived rice plants as relating to persons. Rice was conceptualized not in utilitarian terms as a means of subsistence (used and consumed by humans) but rather as subjects capable of action. The human masks of Jiangjunya hence suggest a personhood for rice, rather than representing humans or anthropomorphic gods. Furthermore, the history of the Jiangjunya rock-art site corresponds with the history of local economics. The relational ontologies might have transformed gradually from human–animal interactions in the Late Palaeolithic and Early Neolithic periods to human–plant interactions in Late Neolithic societies. The author concludes that the art site was possibly treated as a mnemonic maintaining interpersonal and intersubjective relationships across thousands of years.
Wake vortex evolution of a square cylinder with a slot synthetic jet issuing from the cylinder’s rear surface has been experimentally investigated using the time-resolved particle image velocimetry technique. The Reynolds number based on the side length of the square cylinder is $Re=836$. The excitation frequency normalized by the natural shedding frequency $f_{e}/f_{0}$ varies from 0 to 6 at the dimensionless stroke length $L_{0}/w=72.6$. The distributions of the time-averaged Reynolds stresses present significant differences as the excitation frequency increases. With control, the mean streamwise velocity deficit of the wake recovers more quickly in comparison with the natural case, and the vertical velocity fluctuation intensity becomes weaker. Moreover, a drag reduction can be achieved for the control cases, especially, for $f_{e}/f_{0}=4$ and $f_{e}/f_{0}=6$, a thrust instead of drag reduction can be obtained. The profiles of the mean streamwise velocity tend to have jet-like distributions. The wake vortex dynamics and its evolution with the excitation frequency are revealed. (i) For the low excitation frequency cases ($f_{e}/f_{0}=0.5$, 1, 2), no significant changes in the dominant frequency and the spanwise vortex structures are observed in comparison with the natural case. (ii) For the moderate excitation frequency case ($f_{e}/f_{0}=3$), the wake vortex shedding frequency is locked on half of the control frequency. In this case, the shear layer is divided into two parts by the synthetic jet vortex, and the wake vortices with smaller scales still shed asymmetrically and appear closer to the square cylinder. (iii) For the high excitation frequency case ($f_{e}/f_{0}=6$), the flow is governed by the synthetic jet. As a result of strong perturbations of the synthetic jet, the wake vortex shedding becomes symmetric with the shedding frequency consistent with the control frequency. And the separation is suppressed effectively. The different control effects of the slot synthetic jet on a square cylinder and a circular cylinder are also compared in detail. Generally speaking, the circular cylinder is easier to be controlled due to its non-fixed separation points.
The prevalence and factors associated with delays in help seeking for people with dementia in China are unknown.
Methods:
Within 1,010 consecutively registered participants in the Clinical Pathway for Alzheimer's Disease in China (CPAD) study (NCT01779310), 576 persons with dementia (PWDs) and their informants reported the estimated time from symptom onset to first medical visit seeking diagnosis. Univariate analysis of general linear model was used to examine the potential factors associated with the delayed diagnosis seeking.
Results:
The median duration from the first noticeable symptom to the first visit seeking diagnosis or treatment was 1.77 years. Individuals with a positive family history of dementia had longer duration (p = 0.05). Compared with other types of dementia, people with vascular dementia (VaD) were referred for diagnosis earliest, and the sequence for such delays was: VaD < Alzheimer's disease (AD) < frontotemporal dementia (FTD) (p < 0.001). Subtypes of dementia (p < 0.001), family history (p = 0.01), and education level (p = 0.03) were associated with the increased delay in help seeking.
Conclusions:
In China, seeking diagnosis for PWDs is delayed for approximately 2 years, even in well-established memory clinics. Clinical features, family history, and less education may impede help seeking in dementia care.
We present calculation of critical voltage for AlGaN/GaN high electron mobility transistors (HEMTs) with GaN cap layer. The calculation includes mechanical stress and relaxable energy in the GaN/AlGaN barrier layer. Under high voltage conditions, the high electric field results in an increase in stored relaxable energy. If this exceeds a critical value, crystallographic defects are formed. This degradation mechanism is voltage driven and characterized by a critical voltage beyond which non-reversible degradation takes place. The dependence of the GaN cap layer’s thickness on the critical voltage has been discussed. The calculated results indicate that thicker GaN cap layer results in higher critical voltage.
A theoretical study of transconductance characteristics (gm − Vgs profile) of AlGaN/GaN high electron mobility transistors (HEMTs) with a graded AlGaN layer is given in this paper. The calculations were made using a self-consistent solution of the Schrödinger-Poisson equations and an AlGaN/GaN HEMTs numerical device model. Transconductance characteristics of the devices are discussed while the thickness and Al composition of the graded AlGaN layer are optimized. It is found that graded AlGaN layer structure can tailor device’s gm − Vgs profile by improving polar optical phonon mobility and interface roughness mobility. Good agreement is obtained between the theoretical calculations and experimental measurements over the full range of applied gate bias.
Background: Although knowledge of established risk factors for Alzheimer's disease (AD) can logically contribute to the search for predictors of the progression of cognitive impairment, it has not yet been firmly established where in the cognitive impairment process these risk factors exert their effects and how to predict quantitatively for the progression of mild cognitive impairments (MCI) to AD. This study aimed to determine whether known risk factors increased the risk of progression from MCI to AD and to make prediction based on transition probabilities.
Methods: Based on ten examinations of 600 community-dwelling MCI residents and cognitive assessments to classify individuals into MCI, global impairment, and AD, a multi-state Markov Cox's regression model was used and the hazard ratios with their confidence intervals and transition probabilities were estimated.
Results: Multivariate analysis showed that gender, age, and hypertension were statistically significant predictors of transition from MCI to global impairment; age, education, and reading statistically influenced transition from global impairment to MCI; gender, age, hypertension, diabetes, and apolipoprotein E geneε4 status were statistically associated with transition from global impairment to AD. Subjects at MCI were more likely (67%) to remain in that cognitive state at the next cognitive assessment than to transition to cognitive deterioration. For global impairment, probability of remaining in the same state was only 18% and that of forward transition was three times more likely than that of backward transition.
Conclusions: Known risk factors influenced differently for different transitions. Transition from global impairment was more likely to worsen to severe cognitive deterioration than transition from MCI.
KLa2Ti3O9.5 and KLa2Ti3O9.5:Er3+ nanocrystals were successfully synthesized using a hydrothermal method and a subsequent calcination treatment. The band gap (Eg) of the KLa2Ti3O9.5 nanocrystals was calculated to be about 2.56 eV by means of the reflectance diffusion technique. Under 980-nm excitation, the KLa2Ti3O9.5:Er3+ nanocrystals emitted intense green (2H11/2/4S3/2 → 4I15/2) and red (4F9/2 → 4I15/2) upconversion (UC) luminescence. In comparison with pure KLa2Ti3O9.5, the KLa2Ti3O9.5:Er3+ nanocrystals exhibited a higher activity for water splitting into H2 under simulated solar light irradiation. We suggest that the enhancement of photocatalytic activity is related to the Brunauer-Emmett-Teller (BET) surface area and UC luminescence of KLa2Ti3O9.5:Er3+.
An inventory of topsoil soil organic carbon (SOC) content in household farms was performed in a village from a red earth region in Jiangxi Province, China in 2003. In this region, the farmland managed by each household is fragmented, consisting of several plots of land that are not necessarily adjacent to each other. A statistical analysis of SOC variation with land use and household management type, and with crop management practices was conducted. Plot size ranged from 0·007 to 0·630 ha with a mean of 0·1 ha, and SOC content ranged from 1·72 to 25·2 g/kg, varying widely with a variety of land management and agricultural practices, arising from individual household behaviours. The mean SOC content in plot size <0·1 ha was 20% lower than in plot size ⩾0·1 ha. SOC of dry crop plots was 70% lower than that in rice paddies, and SOC of plots contracted from the village was almost double that of plots leased from other householders. Moreover, a 30% increase in SOC was observed with green manure cultivation, and a 55% increase under triple cropping. The difference in SOC levels between the least and most favourable cases of household land management and agricultural practice was up to 150%. The results suggest that policies targeted at crop management alone may not deliver the expected SOC benefits if household land management is also not improved.
X-ray diffraction (XRD) and transmission electron microscope (TEM) investigations have been carried out to decode the influence of stacking-fault energy (SFE) on the accommodation of large shear deformation in Cu-Al alloys subjected to one-pass equal-channel angular pressing. XRD results exhibit that the microstrain and density of dislocations initially increased with the reduction in the SFE, whereas they sharply decreased with a further decrease in SFE. By systematic TEM observations, we noticed that the accommodation mechanism of intense shear strain was gradually transformed from dislocation slip to deformation twin when SFE was lowered. Meanwhile, twin intersections and internal twins were also observed in the Cu-Al alloy with extremely low SFE. Due to the large external plastic deformation, microscale shear bands, as an inherent deformation mechanism, are increasingly significant to help carry the high local plasticity because low SFE facilitates the formation of shear bands.