Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-12T08:10:51.324Z Has data issue: false hasContentIssue false

Viscoelastic ribbons

Published online by Cambridge University Press:  03 December 2020

I. J. Hewitt*
Affiliation:
Mathematical Institute, University of Oxford, OX2 6GG, UK
N. J. Balmforth
Affiliation:
Department of Mathematics, University of British Columbia, Vancouver, BCV6T 1Z2, Canada
*
Email address for correspondence: hewitt@maths.ox.ac.uk

Abstract

A reduced model is presented for the dynamics of a slender sheet of a viscoelastic fluid. Starting with the Oldroyd-B constitutive model and exploiting an asymptotic analysis in the small aspect ratio of the sheet, equations are derived for the evolution of a ‘visco-elastica’. These depend on an elastic modulus, a creep viscosity and a solvent viscosity. They resemble standard equations for an elastica or a viscida, to which they reduce under the appropriate limits. The model is used to explore the effects of viscoelasticity on the dynamics of a curling ribbon, a drooping cantilever, buckling sheets, snap-through and a falling catenary. We then incorporate a yield stress, for a fluid that deforms by creep only above a critical stress, revisiting the curling and cantilever problems. This model generalises a number of previous theories for viscoelastic and viscoplastic ribbons.

Type
JFM Papers
Copyright
© The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Arriagada, O. A., Massiera, G. & Abkarian, M. 2014 Curling and rolling dynamics of naturally curved ribbons. Soft Matter 10 (17), 30553065.CrossRefGoogle ScholarPubMed
Audoly, B., Callan-Jones, A. & Brun, P.-T. 2015 Dynamic curling of an elastica: a nonlinear problem in elastodynamics solved by matched asymptotic expansions. In Extremely Deformable Structures, pp. 137–155. Springer.CrossRefGoogle Scholar
Balmforth, N. J. & Hewitt, I. J. 2013 Viscoplastic sheets and threads. J. Non-Newtonian Fluid Mech. 193, 2842.CrossRefGoogle Scholar
Barnes, H. A. & Roberts, G. P. 2000 The non-linear viscoelastic behaviour of human hair at moderate extensions. Intl. J. Cosmet. Sci. 22 (4), 259264.CrossRefGoogle Scholar
Bird, R. B., Armstrong, R. C. & Hassager, O. 1987 Dynamics of Polymeric Liquids. Vol. 1: Fluid Mechanics. Wiley.Google Scholar
Bird, R. B. & Wiest, J. M. 1995 Constitutive equations for polymeric liquids. Annu. Rev. Fluid Mech. 27 (1), 169193.CrossRefGoogle Scholar
Buckmaster, J. D., Nachman, A. & Ting, L. 1975 The buckling and stretching of a viscida. J. Fluid Mech. 69 (1), 120.CrossRefGoogle Scholar
Chang, H.-C., Demekhin, E. A. & Kalaidin, E. 1999 Iterated stretching of viscoelastic jets. Phys. Fluids 11 (7), 17171737.CrossRefGoogle Scholar
Chiu-Webster, S. & Lister, J. R. 2006 The fall of a viscous thread onto a moving surface: a ‘fluid-mechanical sewing machine’. J. Fluid Mech. 569, 89111.CrossRefGoogle Scholar
Clasen, C., Eggers, J., Fontelos, M. A., Li, J. & McKinley, G. H. 2006 The beads-on-string structure of viscoelastic threads. J. Fluid Mech. 556, 283308.CrossRefGoogle Scholar
Forterre, Y., Skotheim, J. M., Dumais, J. & Mahadevan, L. 2005 How the venus flytrap snaps. Nature 433 (7024), 421.CrossRefGoogle ScholarPubMed
Gomez, M., Moulton, D. E. & Vella, D. 2019 Dynamics of viscoelastic snap-through. J. Mech. Phys. Solids 124, 781813.CrossRefGoogle Scholar
Hayman, B. 1978 Aspects of creep buckling I. The influence of post-buckling characteristics. Proc. R. Soc. Lond. A 364 (1718), 393414.Google Scholar
Kempner, J. 1954 Creep bending and buckling of linearly viscoelastic columns. National Advisory Comm. for Aeronautics, Technical Note 3136.Google Scholar
Linn, J., Lang, H. & Tuganov, A. 2013 Geometrically exact cosserat rods with Kelvin–Voigt type viscous damping. Mech. Sci. 4 (1), 7996.CrossRefGoogle Scholar
Liu, Y., You, Z.-J. & Gao, S.-Z. 2018 A continuous 1-d model for the coiling of a weakly viscoelastic jet. Acta Mechanica 229, 15371550.CrossRefGoogle Scholar
Love, A. E. H. 1944 A Treatise on the Mathematical Theory of Elasticity. Dover.Google Scholar
Minahen, T. M. & Knauss, W. G. 1993 Creep buckling of viscoelastic structures. Intl J. Solids Struct. 30 (8), 10751092.CrossRefGoogle Scholar
Oishi, C. M., Martins, F. P., Tomé, M. F. & Alves, M. A. 2012 Numerical simulation of drop impact and jet buckling problems using the extended pom–pom model. J. Non-Newtonian Fluid Mech. 169, 91103.CrossRefGoogle Scholar
Plaut, R. H. & Virgin, L. N. 2009 Vibration and snap-through of bent elastica strips subjected to end rotations. J. Appl. Mech. 76 (4), 041011.CrossRefGoogle Scholar
Prager, W. & Hodge, P. G. 1951 Theory of Perfectly Plastic Solids. Wiley.Google Scholar
Prior, C., Moussou, J., Chakrabarti, B., Jensen, O. E. & Juel, A. 2016 Ribbon curling via stress relaxation in thin polymer films. Proc. Natl Acad. Sci. 113 (7), 17191724.CrossRefGoogle ScholarPubMed
Ribe, N. M. 2001 Bending and stretching of thin viscous sheets. J. Fluid Mech. 433, 135160.CrossRefGoogle Scholar
Ribe, N. M. 2002 A general theory for the dynamics of thin viscous sheets. J. Fluid Mech. 457, 255283.CrossRefGoogle Scholar
Ribe, N. M., Habibi, M. & Bonn, D. 2012 Liquid rope coiling. Annu. Rev. Fluid Mech. 44, 249266.CrossRefGoogle Scholar
Roy, A., Mahadevan, L. & Thiffeault, J.-L. 2006 Fall and rise of a viscoelastic filament. J. Fluid Mech. 563, 283292.CrossRefGoogle Scholar
Saramito, P. 2007 A new constitutive equation for elastoviscoplastic fluid flows. J. Non-Newtonian Fluid Mech. 145 (1), 114.CrossRefGoogle Scholar
Slim, A. C., Balmforth, N. J., Craster, R. V. & Miller, J. C. 2008 Surface wrinkling of a channelized flow. Proc. R. Soc. Lond. A 465 (2101), 123142.Google Scholar
Slim, A. C., Teichman, J. & Mahadevan, L. 2012 Buckling of a thin-layer Couette flow. J. Fluid Mech. 694, 528.CrossRefGoogle Scholar
Smith, M. L., Yanega, G. M. & Ruina, A. 2011 Elastic instability model of rapid beak closure in hummingbirds. J. Theor. Biol. 282 (1), 4151.CrossRefGoogle ScholarPubMed
Son, K., Guasto, J. S. & Stocker, R. 2013 Bacteria can exploit a flagellar buckling instability to change direction. Nat. Phys. 9 (8), 494.CrossRefGoogle Scholar
Tadrist, L., Brochard-Wyart, F. & Cuvelier, D. 2012 Bilayer curling and winding in a viscous fluid. Soft Matter 8 (32), 85178522.CrossRefGoogle Scholar
Taylor, G. I. 1969 Instability of jets, threads, and sheets of viscous fluid. In Applied Mechanics: Proceedings of the Twelfth International Congress of Applied Mechanics, Stanford University, pp. 382–388. Springer.CrossRefGoogle Scholar
Teichman, J. & Mahadevan, L. 2003 The viscous catenary. J. Fluid Mech. 478, 7180.CrossRefGoogle Scholar
Tomé, M. F., Araujo, M. T., Evans, J. D. & McKee, S. 2019 Numerical solution of the Giesekus model for incompressible free surface flows without solvent viscosity. J. Non-Newtonian Fluid Mech. 263, 104119.CrossRefGoogle Scholar
Van De Fliert, B. W., Howell, P. D. & Ockenden, J. R. 1995 Pressure-driven flow of a thin viscous sheet. J. Fluid Mech. 292, 359376.CrossRefGoogle Scholar
Zuidema, P, Govaert, L. E., Baaijens, F. P. T., Ackermans, P. A. J. & Asvadi, S 2003 The influence of humidity on the viscoelastic behaviour of human hair. Biorheology 40 (4), 431439.Google ScholarPubMed