Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-12T05:34:39.472Z Has data issue: false hasContentIssue false

Three-dimensional printing with sacrificial materials for soft matter manufacturing

Published online by Cambridge University Press:  10 August 2017

Christopher S. O’Bryan
Affiliation:
Department of Mechanical and Aerospace Engineering, University of Florida, USA; csobryan@ufl.edu
Tapomoy Bhattacharjee
Affiliation:
Department of Mechanical and Aerospace Engineering, University of Florida, USA; tapomoy@ufl.edu
Sean R. Niemi
Affiliation:
Department of Mechanical and Aerospace Engineering, University of Florida, USA; impstar@ufl.edu
Sidhika Balachandar
Affiliation:
University of Florida, USA; sbalachandar@gm.sbac.edu
Nicholas Baldwin
Affiliation:
University of Florida, USA; Nlbaldwin98@ufl.edu
S. Tori Ellison
Affiliation:
Department of Mechanical and Aerospace Engineering, University of Florida, USA; trilison@ufl.edu
Curtis R. Taylor
Affiliation:
Department of Mechanical and Aerospace Engineering, University of Florida, USA; curtis.taylor@ufl.edu
W. Gregory Sawyer
Affiliation:
Department of Mechanical and Aerospace Engineering, University of Florida, USA; wgsawyer@ad.ufl.edu
Thomas E. Angelini
Affiliation:
Department of Mechanical and Aerospace Engineering, University of Florida, USA; t.e.angelini@ufl.edu
Get access

Abstract

Three-dimensional (3D) printing has expanded beyond the mere patterned deposition of melted solids, moving into areas requiring spatially structured soft matter—typically materials composed of polymers, colloids, surfactants, or living cells. The tunable and dynamically variable rheological properties of soft matter enable the high-resolution manufacture of soft structures. These rheological properties are leveraged in 3D printing techniques that employ sacrificial inks and sacrificial support materials, which go through reversible solid–fluid transitions under modest forces or other small perturbations. Thus, a sacrificial material can be used to shape a second material into a complex 3D structure, and then discarded. Here, we review the sacrificial materials and related methods used to print soft structures. We analyze data from the literature to establish manufacturing principles of soft matter printing, and we explore printing performance within the context of instabilities controlled by the rheology of soft matter materials.

Type
Research Article
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bhattacharjee, T., Zehnder, S.M., Rowe, K.G., Jain, S., Nixon, R.M., Sawyer, W.G., Angelini, T.E., Sci. Adv. 1 , e1500655 (2015).CrossRefGoogle Scholar
Lee, J.-S., Hong, J.M., Jung, J.W., Shim, J.-H., Oh, J.-H., Cho, D.-W., Biofabrication 6, 024103 (2014).Google Scholar
Ouyang, L., Highley, C.B., Rodell, C.B., Sun, W., Burdick, J.A., ACS Biomater. Sci. Eng. 2, 1743 (2016).Google Scholar
Shim, J.-H., Lee, J.-S., Kim, J.Y., Cho, D.-W., J. Micromech. Microeng. 22, 085014 (2012).Google Scholar
Bertassoni, L.E., Cecconi, M., Manoharan, V., Nikkhah, M., Hjortnaes, J., Cristino, A.L., Barabaschi, G., Demarchi, D., Dokmeci, M.R., Yang, Y., Lab Chip 14, 2202 (2014).CrossRefGoogle Scholar
Kang, H.-W., Lee, S.J., Ko, I.K., Kengla, C., Yoo, J.J., Atala, A., Nat. Biotechnol. 34, 312 (2016).CrossRefGoogle Scholar
Hinton, T.J., Hudson, A., Pusch, K., Lee, A., Feinberg, A.W., ACS Biomater. Sci. Eng. 2, 1781 (2016).CrossRefGoogle Scholar
Muth, J.T., Vogt, D.M., Truby, R.L., Mengüç, Y., Kolesky, D.B., Wood, R.J., Lewis, J.A., Adv. Mater. 26, 6307 (2014).CrossRefGoogle Scholar
O’Bryan, C.S., Bhattacharjee, T., Hart, S., Kabb, C.P., Schulze, K.D., Chilakala, I., Sumerlin, B.S., Sawyer, W.G., Angelini, T.E., Sci. Adv. 3, e1602800 (2017).Google Scholar
Bhattacharjee, T., Gil, C.J., Marshall, S.L., Urueña, J.M., O’Bryan, C.S., Carstens, M., Keselowsky, B., Palmer, G.D., Ghivizzani, S., Gibbs, C.P., ACS Biomater. Sci. Eng. 2, 1787 (2016).Google Scholar
Pati, F., Shim, J.-H., Lee, J.-S., Cho, D.-W., Manuf. Lett. 1, 49 (2013).CrossRefGoogle Scholar
Xu, C., Chai, W., Huang, Y., Markwald, R.R., Biotechnol. Bioeng. 109, 3152 (2012).CrossRefGoogle Scholar
Wood, G., Keech, M., Biochem. J. 75, 588 (1960).CrossRefGoogle Scholar
Yang, Y.-L., Kaufman, L.J., Biophys. J. 96, 1566 (2009).Google Scholar
Yang, Y.-L., Motte, S., Kaufman, L.J., Biomaterials 31, 5678 (2010).CrossRefGoogle ScholarPubMed
de Gennes, P.G., Angew. Chem. Int. Ed. Engl. 31, 842 (1992).CrossRefGoogle Scholar
Bellan, L.M., Singh, S.P., Henderson, P.W., Porri, T.J., Craighead, H.G., Spector, J.A., Soft Matter 5, 1354 (2009).Google Scholar
Jin, Y., Compaan, A., Bhattacharjee, T., Huang, Y., Biofabrication 8, 025016 (2016).Google Scholar
Hanson Shepherd, J.N., Parker, S.T., Shepherd, R.F., Gillette, M.U., Lewis, J.A., Nuzzo, R.G., Adv. Funct. Mater. 21, 47 (2011).Google Scholar
Homan, K.A., Kolesky, D.B., Skylar-Scott, M.A., Herrmann, J., Obuobi, H., Moisan, A., Lewis, J.A., Sci. Rep. 6, 34845 (2016).Google Scholar
Kolesky, D.B., Truby, R.L., Gladman, A., Busbee, T.A., Homan, K.A., Lewis, J.A., Adv. Mater. 26, 3124 (2014).Google Scholar
Highley, C.B., Rodell, C.B., Burdick, J.A., Adv. Mater. 27, 5075 (2015).Google Scholar
Rodell, C.B., Kaminski, A.L., Burdick, J.A., Biomacromolecules 14, 4125 (2013).CrossRefGoogle Scholar
Habas, J.-P., Pavie, E., Lapp, A., Peyrelasse, J., J. Rheol. 48, 1 (2004).Google Scholar
Perreur, C., Habas, J.-P., Peyrelasse, J., François, J., Lapp, A., Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 63, 031505 (2001).CrossRefGoogle Scholar
Dimitriou, C.J., Ewoldt, R.H., McKinley, G.H., J. Rheol. 57, 27 (2013).Google Scholar
LeBlanc, K.J., Niemi, S.R., Bennett, A.I., Harris, K.L., Schulze, K.D., Sawyer, W.G., Taylor, C., Angelini, T.E., ACS Biomater. Sci. Eng. 2, 1796 (2016).Google Scholar
Standard Specification for Additive Manufacturing File Format (AMF) , Version 1.2 (ASTM International, West Conshohocken, PA, 2016).Google Scholar
Hinton, T.J., Jallerat, Q., Palchesko, R.N., Park, J.H., Grodzicki, M.S., Shue, H.-J., Ramadan, M.H., Hudson, A.R., Feinberg, A.W., Sci. Adv. 1, e1500758 (2015).Google Scholar
Landers, R., Hübner, U., Schmelzeisen, R., Mülhaupt, R., Biomaterials 23, 4437 (2002).Google Scholar
Landers, R., Pfister, A., Hübner, U., John, H., Schmelzeisen, R., Mülhaupt, R., J. Mater. Sci. 37, 3107 (2002).CrossRefGoogle Scholar
Miller, J.S., Stevens, K.R., Yang, M.T., Baker, B.M., Nguyen, D.-H.T., Cohen, D.M., Toro, E., Chen, A.A., Galie, P.A., Yu, X., Nat. Mater. 11, 768 (2012).Google Scholar
Miller, J.S., PLoS Biol. 12, e1001882 (2014).Google Scholar
Therriault, D., Shepherd, R.F., White, S.R., Lewis, J.A., Adv. Mater. 17, 395 (2005).CrossRefGoogle Scholar
Therriault, D., White, S.R., Lewis, J.A., Nat. Mater. 2, 265 (2003).CrossRefGoogle Scholar
Coutanceau, M., Defaye, J.-R., Appl. Mech. Rev. 44, 255 (1991).Google Scholar
Taneda, S., J. Phys. Soc. Jpn. 11, 1104 (1956).CrossRefGoogle Scholar
Thom, A., Proc. R. Soc. Lond. A 141, 651 (1933).Google Scholar
Wu, W., DeConinck, A., Lewis, J.A., Adv. Mater. 23, 24 (2011).Google Scholar
Compaan, A.M., Christensen, K., Huang, Y., ACS Biomater. Sci. Eng. (2016), doi:10.1021/acsbiomaterials.6b00432.Google Scholar
Visser, J., Peters, B., Burger, T.J., Boomstra, J., Dhert, W.J., Melchels, F.P., Malda, J., Biofabrication 5, 035007 (2013).Google Scholar
Kolesky, D.B., Homan, K.A., Skylar-Scott, M.A., Lewis, J.A., Proc. Natl. Acad. Sci. U.S.A. 113, 3179 (2016).Google Scholar
Lee, V.K., Kim, D.Y., Ngo, H., Lee, Y., Seo, L., Yoo, S.-S., Vincent, P.A., Dai, G., Biomaterials 35, 8092 (2014).Google Scholar
Lee, W., Lee, V., Polio, S., Keegan, P., Lee, J.-H., Fischer, K., Park, J.-K., Yoo, S.-S., Biotechnol. Bioeng. 105, 1178 (2010).CrossRefGoogle Scholar
Sooppan, R., Paulsen, S.J., Han, J., Ta, A.H., Dinh, P., Gaffey, A.C., Venkataraman, C., Trubelja, A., Hung, G., Miller, J.S., Tissue Eng. Part C Methods 22, 1 (2015).Google Scholar
Zhao, L., Lee, V.K., Yoo, S.-S., Dai, G., Intes, X., Biomaterials 33, 5325 (2012).Google Scholar
Stokes, G.G., On the Effect of the Internal Friction of Fluids on the Motion of Pendulums (Pitt Press, 1851), vol. 9.Google Scholar
Pairam, E., Le, H., Fernández-Nieves, A., Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 90, 021002 (2014).Google Scholar
Shanahan, M., Degennes, P., C.R. Acad. Sci. II 302, 517 (1986).Google Scholar
Style, R.W., Isa, L., Dufresne, E.R., Soft Matter 11, 7412 (2015).CrossRefGoogle Scholar
Style, R.W., Jagota, A., Hui, C.-Y., Dufresne, E.R., Annu. Rev. Condens. Matter Phys. 8, 99 (2016).Google Scholar
Chang, Y.-W., Fragkopoulos, A.A., Marquez, S.M., Kim, H.D., Angelini, T.E., Fernández-Nieves, A., New J. Phys. 17, 033017 (2015).Google Scholar
Binks, B.P., Curr. Opin. Colloid Interface Sci. 7, 21 (2002).Google Scholar
Pickering, S.U., J. Chem. Soc. Trans. 91, 2001 (1907).Google Scholar
Supplementary material: PDF

O’Bryan supplementary material

O’Bryan supplementary material

Download O’Bryan supplementary material(PDF)
PDF 1 MB