Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-12T00:47:41.677Z Has data issue: false hasContentIssue false

Gibbosporina, a new genus for foliose and tripartite, Palaeotropic Pannariaceae species previously assigned to Psoroma

Published online by Cambridge University Press:  14 January 2016

Arve ELVEBAKK
Affiliation:
(corresponding author): Tromsø University Museum, University of Tromsø – Arctic University of Norway, PO Box 5060 Langnes, N-9037 Tromsø, Norway. Email: arve.elvebakk@uit.no
Soon Gyu HONG
Affiliation:
Division of Polar Life Sciences, Korea Polar Research Institute, Songdomirae-ro 26, Yeonsu-gu, Incheon 406-840, Republic of Korea.
Chae Haeng PARK
Affiliation:
Division of Polar Life Sciences, Korea Polar Research Institute, Songdomirae-ro 26, Yeonsu-gu, Incheon 406-840, Republic of Korea.
Eli Helene ROBERTSEN
Affiliation:
Department of Arctic and Marine Biology, University of Tromsø – Arctic University of Norway, PO Box 5060 Langnes, N-9037 Tromsø, Norway.
Per Magnus JØRGENSEN
Affiliation:
University of Bergen, Department of Natural History, Box 7800, N-5020 Bergen, Norway.

Abstract

Reports of ‘Psoroma sphinctrinum’ from Palaeotropical areas are shown to represent instead species of the genus Gibbosporina, which is described here as new to science. This genus is superficially similar to tripartite, austral Pannaria species, such as the species now referred to as Pannaria sphinctrina (Mont.) Tuck. ex Hue. A phylogram based on an analysis of the nuclear large subunit rDNA (LSU) locus shows that Gibbosporina is instead a clade in a Pannariaceae branch referred to as the ‘Physma group’, a most unexpected addition to Pannariaceae dealt with by several previous studies. Genera assigned to this group have very contrasting general appearances. However, this diverse group shares distinctly ring-like thalline excipular margins; strongly amyloid internal ascus structures; well-developed perispores which have irregular gibbae and/or nodulose or acuminate apical extensions, but not verrucae; lacks TLC-detectable secondary compounds and have tropical distributions. Gibbosporina is the only tripartite genus in the group, with distinct, nodulose, placodioid, mini-fruticose to mini-foliose cephalodia with a high diversity of Nostoc cyanobionts. The cyanomorphs can apparently exist independently in some cases, although the apothecia on such cephalodia on a specimen from Réunion were unexpectedly found to belong to the chloromorph. The genus and related genera forming the ‘Physma group’ are probably evolutionarily old, and their weak affinity to the remaining part of Pannariaceae, concentrated in the Southern Hemisphere, is discussed. The genus includes 13 known species, and the generitype is Gibbosporina boninensis from the Japanese Ogasawara Islands, originally described as Psoroma boninense and recombined here. The following 12 species are described here as new to science, seven of them with molecular support in an LSU and ITS-based phylogram: Gibbosporina acuminata (Australia, the Philippines), G. amphorella (New Caledonia), G. bifrons (Malaysia, New Caledonia, the Philippines, Solomon Islands), G. didyma (Mauritius, Réunion), G. elixii (Australia), G. leptospora (Australia, Papua New Guinea), G. nitida (Australia, Papua New Guinea, the Philippines), G. mascarena (Mauritius, Réunion, Sri Lanka), G. papillospora (the Philippines), G. phyllidiata (Solomon Islands), G. sphaerospora (Australia, Indonesia, Malaysia, the Philippines, Samoa, and with Psoroma sphinctrinum var. endoxanthellum as a new synonym), and G. thamnophora (Australia and the Philippines). Except for the phyllidiate G. phyllidiata and for G. thamnophora which has cephalodia adapted for vegetative propagation, the species are all primarily fertile. A key for determining the species is provided.

Type
Articles
Copyright
© British Lichen Society, 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Beimforde, C., Feldberg, K., Nylinder, S., Rikkinen, J., Tuovila, H., Dorfelt, H., Gube, M., Jackson, D. J., Reitner, J., Seyfullah, L. J., et al. (2014) Estimating the Phanerozoic history of the Ascomycota lineages: combining fossil and molecular data. Molecular Phylogenetics and Evolution 78: 368398.Google Scholar
Bjerke, J. W., Lerfall, K. & Elvebakk, A. (2002) Effects of ultraviolet radiation and PAR on the content of usnic and divaricatic acid in two arctic-alpine lichens. Photochemical and Photobiological Sciences 1: 678685.Google Scholar
Culberson, C. F. (1972) Improved conditions and new data for the identification of lichen products by a standardized thin layer chromatography method. Journal of Chromatography 72: 113125.Google Scholar
Darriba, D., Taboada, G. L., Doallo, R. & Posada, D. (2012) jModelTest 2: more models, new heuristics and parallel computing. Nature Methods 9: 772.Google Scholar
Doidge, E. M. (1950) The South African fungi and lichens to the end of 1945. Bothalia 5: 11094.Google Scholar
Ekman, S. & Jørgensen, P. M. (2002) Towards a molecular phylogeny for the lichen family Pannariaceae. Canadian Journal of Botany 80: 625634.Google Scholar
Ekman, S., Wedin, M., Lindblom, L. & Jørgensen, P. M. (2014) Extended phylogeny and a revised generic classification of the Pannariaceae (Peltigerales, Acomycotina). Lichenologist 46: 627656.CrossRefGoogle Scholar
Elvebakk, A. (2007) The panaustral lichen Pannaria sphinctrina (Mont.) Tuck. and the related new species P. lobulifera from New Caledonia. Cryptogamie, Mycologie 28: 225235.Google Scholar
Elvebakk, A. (2011) Pannaria santessonii, a new, large-squamulose, vicanicin-containing, tripartite lichen species from Chile. Nova Hedwigia 93: 443451.Google Scholar
Elvebakk, A. & Galloway, D. J. (2003) Notes on the heterogeneous genus Psoroma s. lat. in New Zealand. Australasian Lichenologist 53: 49.Google Scholar
Elvebakk, A., Robertsen, E. H., Park, C. H. & Hong, S. G. (2010) Psorophorus and Xanthopsoroma, two new genera for yellow-green, corticolous and squamulose lichen species, previously in Psoroma . Lichenologist 42: 563585.CrossRefGoogle Scholar
Guindon, S. & Gascuel, O. (2003) A simple, fast and accurate algorithm to estimate large phylogenies by maximum likelihood. Systematic Biology 52: 696704.CrossRefGoogle ScholarPubMed
Heenan, P. B. & Smissen, R. D. (2013) Revised circumscription of Nothofagus and recognition of the segregate genera Fuscospora, Lophosonia, and Trisyngyne (Nothofagaceae). Phytotaxa 146: 131.CrossRefGoogle Scholar
Hue, A. (1902, ‘1901’) Causerie sur les Pannaria . Bulletin de la Societé Botanique de France 48: 3165.Google Scholar
Hue, A. (1906) Lichenes morphologice et anatomice disposuit. Nouvelles Archives du Muséum d’Histoire Naturelle de Paris 8: 237272.Google Scholar
James, P. W. & Henssen, A. (1975) A new species of Psoroma with sorediate cephalodia. Lichenologist 7: 143147.Google Scholar
Jørgensen, P. M. (1983) Distribution patterns of lichens in the Pacific region. Australian Journal of Botany Supplementary Series 10: 4366.Google Scholar
Jørgensen, P. M. (2001 [‘2000’]) Survey of the lichen family Pannariaceae on the American continent, north of Mexico. Bryologist 103: 670704.Google Scholar
Jørgensen, P. M. (2003) Conspectus familiae Pannariaceae (Ascomycetes lichenosae). Ilicifolia 4: 179.Google Scholar
Jørgensen, P. M. (2015) Pannaria reflectens, a misunderstood lichen of the Australian mangroves, with an annotated key to the Australian species of the Pannaria lurida group. Australasian Lichenologist 76: 1315.Google Scholar
Jørgensen, P. M. & Galloway, D. J. (1992) Pannariaceae. Flora of Australia 54: 246293.Google Scholar
Jørgensen, P. M. & Tønsberg, T. (2012) Lav – vekster med flere ansikter. Årbok for Universitetsmuseet i Bergen 2012: 8391.Google Scholar
Kimura, M. (1980) A simple method for estimating evolutionary rate of base substitution through comparative studies of nucleotide sequences. Journal of Molecular Evolution 16: 111120.CrossRefGoogle ScholarPubMed
Kurokawa, S. (1969) Lichens of the Chichijima Island of the Bonin Islands collected by Dr. H. Inoue. Bulletin of the National Science Museum of Tokyo 12: 685692.Google Scholar
Lanave, C., Preparata, G., Saccone, C. & Serio, G. (1984) A new method for calculating evolutionary substitution rates. Journal of Molecular Evolution 20: 8693.CrossRefGoogle ScholarPubMed
Larkin, M. A., Blackshields, G., Brown, N. P., Chenna, R., McGettigan, P. A., McWilliam, H., Valentin, F., Wallace, I. M., Wilm, A., Lopez, R., et al. (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23: 29472948.Google Scholar
Leighton, W. A. (1869) The lichens of Ceylon collected by G. H. K. Twaites. Transactions of the Linnaean Society of London 27: 161185.Google Scholar
Le Roux, J. J., Strasberg, D., Rouget, M., Morden, C. W., Koordom, M. & Richardson, D. M. (2014) Relatedness defies biogeography: the tale of two island endemics (Acacia heterophylla and A. koa). New Phytologist 204: 230242.Google Scholar
Lumbsch, H. T., Ahti, T., Altermann, S., Amo de Paz, G., Aptroot, A., Arup, U., Bárcenas Peña, A., Bawingan, P. A., Benatti, M. N., Betancourt, L. et al. (2011) One hundred new species of lichenized fungi: a signature of undiscovered global diversity. Phytotaxa 18: 1127.Google Scholar
Magain, N. & Sérusiaux, E. (2014) Do photobiont switch and cephalodia emancipation act as evolutionary drivers in the lichen symbiosis? A case study in the Pannariaceae . PLoS One 9(2): e89876.CrossRefGoogle ScholarPubMed
Miller, J. T., Seigler, D. & Mischler, B. D. (2014) A phylogenetic solution to the Acacia problem. Taxon 63: 653658.Google Scholar
Muggia, L., Nelson, P., Wheeler, T., Yakovchenko, L. S., Tønsberg, T. & Spribille, T. (2011) Convergent evolution of a symbiotic duet: the case of the lichen genus Polychidium (Peltigerales, Ascomycota). American Journal of Botany 98: 16471656.Google Scholar
Nordin, A. (1997) Ascospore structures in Physciaceae: an ultrastructural study. Symbolae Botanicae Upsalienses 32(1): 195208.Google Scholar
Nylander, W. (1859) Dispositio Psoromatum et Pannariarum. Annales des Sciences Naturelles, Botanique, Séries 12 4: 293295.Google Scholar
Orange, A., James, P. W. & White, F. J. (2001) Microchemical Methods for the Identification of Lichens. London: British Lichen Society.Google Scholar
Otálora, M. A. G., Aragón, G., Molina, M. C. & Martínez, I. (2010) Disentangling the Collema-Leptogium complex through a molecular phylogenetic study of the Collemataceae (Peltigerales, lichen-forming Ascomycota). Mycologia 102: 279290.Google Scholar
Pagani, M., Zachos, J. C., Freeman, K. H., Tipple, B. & Bohaty, S. (2005) Marked decline in atmospheric carbon dioxide concentrations during the Palaeogene. Science 309: 600603.Google Scholar
Passo, A. & Calvelo, S. (2006) New reports and combinations in the family Pannariaceae (Lecanorales, lichenized Ascomycota). Lichenologist 38: 549555.Google Scholar
Passo, A., Calvelo, S. & Stocker-Wörgötter, E. (2004) Taxonomic notes on Pannaria pallida from southern South America and New Zealand. Mycotaxon 90: 355365.Google Scholar
Passo, A., Stenroos, S. & Calvelo, S. (2008) Joergensenia, a new genus to accommodate Psoroma cephalodinum (lichenized Ascomycota). Mycological Research 112: 14651474.CrossRefGoogle ScholarPubMed
Prieto, M. & Wedin, M. (2013) Dating the diversification of the major lineages of Ascomycota (Fungi). PLoS One 8(6): e65576.Google Scholar
Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M. A. & Huelsenbeck, J. P. (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61: 539542.Google Scholar
Spribille, T. & Muggia, L. (2013) Expanded taxon sampling disentangles evolutionary relationships and reveals a new family in Peltigerales (Lecanoromycetidae, Ascomycota). Fungal Diversity 58: 171184.CrossRefGoogle Scholar
Takamatsu, S. & Matsuda, S. (2004) Estimation of molecular clocks for ITS and 28S rDNA in Erysiphales . Mycoscience 45: 340344.CrossRefGoogle Scholar
Tamura, K., Stecher, G., Peterson, D., Filipski, A. & Kumar, S. (2013) MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Molecular Biology and Evolution 30: 27252729.Google Scholar
Vainio, E. A. (1920) Lichenes Insularum Philippinarum III. Annales Academiae Scientiae Fennicae, ser. A 15: 1368.Google Scholar
van den Boom, P. P. G., Brand, M., Ertz, D., Kalb, K., Magain, N., Masson, D., Schiefelbein, U., Sipman, H. J. M. & Sérusiaux, E. (2011) Discovering the lichen diversity of a remote tropical island: working list of species collected on Réunion (Mascarene archipelago, Indian Ocean). Herzogia 24: 325349.Google Scholar
Verdon, D. & Elix, J. A. (1994) A new species and new records of Physma from Australia. Acta Botanica Fennica 150: 209215.Google Scholar
Wedin, M., Jørgensen, P. M. & Wiklund, E. (2007) Massalongiaceae fam. nov., an overlooked monophyletic group among the cyanobacterial lichens (Peltigerales, Lecanoromycetes, Ascomycota). Lichenologist 39: 6167.Google Scholar
Wedin, M., Wiklund, E., Jørgensen, P. M. & Ekman, S. (2009) Slippery when wet: phylogeny and character evolution in the gelatinous cyanobacterial lichens (Peltigerales, Ascomycetes). Molecular Phylogenetics and Evolution 53: 862871.Google Scholar
Wedin, M., Jørgensen, P. M. & Ekman, S. (2011) Vahliellaceae, a new family of cyanobacterial lichens (Peltigerales, Ascomycetes). Lichenologist 43: 6772.Google Scholar
Yu, S., Xiaolan, H. & Glenny, D. (2014) Transantarctic disjunctions in Schistochilaceae (Marchantiophyta) explained by early extinction events, post-Gondwanan radiations and palaeoclimatic changes. Molecular Phylogenetics and Evolution 76: 189201.Google Scholar
Zahlbruckner, A. (1907) Die Flechten der Samoa-Inseln. In Botanische und Zoologische Ergebnisse einer wissenschaftlichen Forschungreise nach den Samoainseln, dem Neuguinea-Archipel und den Salomons-Inseln von März bis Dezember 1905 (K. Rechinger, ed.): 2691. Wien: In Kommission bei Alfred Hölder.Google Scholar
Zahlbruckner, A. (1933) Flechten der Insel Formosa. Feddes Repertorium Specierum Novarum Regni Vegetabilis 31: 194224.Google Scholar