Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-12T04:12:35.124Z Has data issue: false hasContentIssue false

Glass-ceramics for nuclear-waste immobilization

Published online by Cambridge University Press:  06 March 2017

John S. McCloy
Affiliation:
School of Mechanical and Materials Engineering, Washington State University, USA; john.mccloy@wsu.edu
Ashutosh Goel
Affiliation:
Department of Materials Science and Engineering, Rutgers, The State University of New Jersey, USA; ag1179@soe.rutgers.edu
Get access

Abstract

Crystallization in glasses is usually considered to be a problem in the glass industry. However, controlled crystallization of glasses is an important prerequisite in the development of glass-ceramics with tailored useful properties. Similar boundary conditions apply when considering glass-ceramics for the immobilization of nuclear waste via vitrification. While uncontrolled crystallization in nuclear-waste glasses is problematic, chemically durable glass-ceramics with significantly high waste loadings can be produced with controlled crystallization of glasses. This article presents an overview of various aspects of nuclear-waste glasses where crystallization is either considered to be advantageous or problematic. The classification of glass-ceramic waste forms and strategies to design glass-ceramics for a given waste stream is discussed. Some open and relevant problems faced by researchers developing nuclear-waste glass-ceramics are also offered.

Type
Research Article
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Lee, W.E., Ojovan, M.I., Jantzen, C.M., Eds., Radioactive Waste Management and Contaminated Site Clean-Up: Processes, Technologies and International Experience (Woodhead Publishing, Oxford, UK, 2013).Google Scholar
Donald, I.W., Metcalfe, B.L., Taylor, R.N.J., J. Mater. Sci. 32, 5851 (1997).CrossRefGoogle Scholar
Ojovan, M.I., Lee, W.E., An Introduction to Nuclear Waste Immobilisation (Elsevier, Amsterdam, The Netherlands, 2005).Google Scholar
Donald, I.W., Waste Immobilization in Glass and Ceramic Based Hosts: Radioactive, Toxic, and Hazardous Wastes (Wiley, Chichester, UK, 2010).Google Scholar
Caurant, D., Loiseau, P., Majerus, O., Aubin-Chevaldonnet, V., Bardez, I., Quintas, A., Glasses, Glass-Ceramics and Ceramics for Immobilization of Highly Radioactive Nuclear Wastes (Nova Science, New York, 2009).Google Scholar
Weber, W.J., Ewing, R.C., Catlow, C.R.A., de la Rubia, T.D., Hobbs, L.W., Kinoshita, C., Matzke, H., Motta, A.T., Nastasi, M., Salje, E.K.H., Vance, E.R., Zinkle, S.J., J. Mater. Res. 13, 1434 (1998).Google Scholar
De, A.K., Luckscheiter, B., Lutze, W., Malow, G., Schiewer, E., Am. Ceram. Soc. Bull. 55, 500 (1976).Google Scholar
Höland, W., Beall, G.H., Glass Ceramic Technology, 2nd ed. (Wiley, Hoboken, NJ, 2012).CrossRefGoogle Scholar
National Research Council, Committee on Waste Forms Technology and Performance, Waste Forms Technology and Performance: Final Report (National Academy of Sciences, Washington, DC, 2011).Google Scholar
Ojovan, M., Lee, W., Metall. Mater. Trans. A 42, 837 (2011).CrossRefGoogle Scholar
Hrma, P., J. Non Cryst. Solids 356, 3019 (2010).Google Scholar
Kim, D.S., Peeler, D.K., Hrma, P., Ceram. Trans. 61, Jain, V., Palmer, R., Eds. (American Ceramic Society, Westerville, OH, 1995), p. 177.Google Scholar
Loiseau, P., Caurant, D., Baffier, N., Mazerolles, L., Fillet, C., J. Nucl. Mater. 335, 14 (2004).Google Scholar
Lee, W.E., Ojovan, M.I., Stennett, M.C., Hyatt, N.C., Adv. Appl. Ceram. 105, 3 (2006).CrossRefGoogle Scholar
Boccaccini, A.R., Bernardo, E., Blain, L., Boccaccini, D.N., J. Nucl. Mater. 327, 148 (2004).CrossRefGoogle Scholar
Hayward, J.P., in Radioactive Waste Forms for the Future, Lutze, W., Ewing, R.C., Eds. (North-Holland, Amsterdam, 1988), p. 427.Google Scholar
Lutze, W., Borchardt, J., De, A.K., “Characterization of Glass and Glass Ceramic Nuclear Waste Forms,” Mater. Res. Symp. Proc. 1, McCarthy, G.J., Schwoebel, R.L., Potter, R.W. II, Friedman, A.M., Moore, J.G., Burkholder, H.C., Lutze, W., Eds. (Materials Research Society, Warrendale, PA, 1979), p. 69.Google Scholar
Crum, J.V., Turo, L., Riley, B., Tang, M., Kossoy, A., J. Am. Ceram. Soc. 95, 1297 (2012).CrossRefGoogle Scholar
Maddrell, E., Thornber, S., Hyatt, N.C., J. Nucl. Mater. 456, 461 (2015).Google Scholar
Ebert, W.L., Snyder, C.T., Riley, B.J., Frank, S.M., “Designing Advanced Ceramic Waste Forms for Electrochemical Processing Salt Waste” (Report No. FCRD-MRWFD-2016-000038, Argonne National Laboratory, Argonne, IL, 2016).Google Scholar
Lumpkin, G.R., Elements 2, 365 (2006).CrossRefGoogle Scholar
Zhang, Y., Zhang, Z., Thorogood, G., Vance, E.R., J. Nucl. Mater. 432, 545 (2013).CrossRefGoogle Scholar
Pinet, O., Grandjean, A., Frugier, P., Rabiller, H., Poissonnet, S., J. Non Cryst. Solids 352, 3095 (2006).Google Scholar
Caurant, D., Majérus, O., Fadel, E., Quintas, A., Gervais, C., Charpentier, T., Neuville, D., J. Nucl. Mater. 396, 94 (2010).CrossRefGoogle Scholar
Crum, J., Maio, V., McCloy, J., Scott, C., Riley, B., Benefiel, B., Vienna, J., Archibald, K., Rodriguez, C., Rutledge, V., Zhu, Z., Ryan, J., Olszta, M., J. Nucl. Mater. 444, 481 (2014).Google Scholar
Schuller, S., Pinet, O., Penelon, B., J. Am. Ceram. Soc. 94, 447 (2011).CrossRefGoogle Scholar
Schuller, S., Pinet, O., Grandjean, A., Blisson, T., J. Non Cryst. Solids 354, 296 (2008).Google Scholar
Magnin, M., Schuller, S., Mercier, C., Trébosc, J., Caurant, D., Majérus, O., Angéli, F., Charpentier, T., J. Am. Ceram. Soc. 94, 4274 (2011).Google Scholar
Riley, B.J., Crum, J.V., Matyáš, J., McCloy, J.S., Lepry, W.C., J. Am. Ceram. Soc. 95, 3115 (2012).Google Scholar
Lemesle, T., Méar, F.O., Campayo, L., Pinet, O., Revel, B., Montagne, L., J. Hazard. Mater. 264, 117 (2014).Google Scholar
Riley, B.J., Rieck, B.T., McCloy, J.S., Crum, J.V., Sundaram, S.K., Vienna, J.D., J. Nucl. Mater. 424, 29 (2012).Google Scholar
Bateman, K.J., Knight, C.J., Solbrig, C.W., “Current Status of Ceramic Waste Form Development” (Report INL/INT-06-11736, Rev. 1, Idaho National Laboratory, Idaho Falls, ID, 2007).Google Scholar
Vance, E.R., Davis, J., Olufson, K., Chironi, I., Karatchevtseva, I., Farnan, I., J. Nucl. Mater. 420, 396 (2012).CrossRefGoogle Scholar
Chouard, N., Caurant, D., Majérus, O., Dussossoy, J.L., Ledieu, A., Peuget, S., Baddour-Hadjean, R., Pereira-Ramos, J.P., J. Non Cryst. Solids 357, 2752 (2011).Google Scholar
Chouard, N., Caurant, D., Majérus, O., Guezi-Hasni, N., Dussossoy, J.-L., Baddour-Hadjean, R., Pereira-Ramos, J.-P., J. Alloys Compd. 671, 84 (2016).CrossRefGoogle Scholar
Zanotto, E.D., Int. J. Appl. Glass Sci. 4, 105 (2013).Google Scholar
Hill, R., Calver, A., Stamboulis, A., Bubb, N., J. Am. Ceram. Soc. 90, 763 (2007).Google Scholar
Fernandez-Martin, C., Bruno, G., Crochet, A., Ovono Ovono, D., Comte, M., Hennet, L., J. Am. Ceram. Soc. 95, 1304 (2012).Google Scholar
Bocker, C., Rüssel, C., Avramov, I., Chem. Phys. 406, 50 (2012).CrossRefGoogle Scholar
McCloy, J.S., Schweiger, M.J., Rodriguez, C.P., Vienna, J.D., Int. J. Appl. Glass Sci. 2, 201 (2011).Google Scholar
Trocellier, P., Ann. Chimie Sci. Materiaux. 26, 113 (2001).CrossRefGoogle Scholar
Gin, S., Abdelouas, A., Criscenti, L.J., Ebert, W.L., Ferrand, K., Geisler, T., Harrison, M.T., Inagaki, Y., Mitsui, S., Mueller, K.T., Marra, J.C., Pantano, C.G., Pierce, E.M., Ryan, J.V., Schofield, J.M., Steefel, C.I., Vienna, J.D., Mater. Today 16, 243 (2013).Google Scholar
Li, H., Vienna, J.D., Hrma, P., Smith, D.E., Schweiger, M.J., Mater. Res. Soc. Symp. Proc. 465, Gray, W.J., Triay, I.R., Eds. (Materials Research Society, Warrendale, PA, 1997), p. 261.Google Scholar
Vienna, J.D., Ryan, J.V., Gin, S., Inagaki, Y., Int. J. Appl. Glass Sci. 4, 283 (2013).CrossRefGoogle Scholar