Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-12T09:33:12.754Z Has data issue: false hasContentIssue false

Mechanisms and theoretical simulations of the catalytic growth of nanocarbons

Published online by Cambridge University Press:  10 November 2017

Evgeni S. Penev
Affiliation:
Rice University, USA; epenev@rice.edu
Feng Ding
Affiliation:
Ulsan National Institute of Science and Technology; and Center for Multidimensional Carbon Materials, Institute for Basic Science, South Korea; f.ding@unist.ac.kr
Boris I. Yakobson
Affiliation:
Rice University, USA; biy@rice.edu
Get access

Abstract

Nanocarbons have been catalytically grown since 1993. However, even today, the formation mechanisms of carbon nanotubes (CNTs) and graphene are not sufficiently understood. This sustained challenge has been an engine for the development in theory concepts and computational methods, tackling the problem of well-controlled production of these nanomaterials. This article discusses how experimental discoveries and theoretical approaches evolved hand-in-hand for the successful understanding of challenging issues, highlighting parallels and distinctions between graphene and CNTs. Key aspects include the mechanisms of nucleation and CNT-liftoff, chiral symmetry selection and control, rates of growth and island shapes, mechanisms defining single chirality of the nanotubes, and ways to suppress grain boundaries in the quest for ever larger and faster growing single-crystal graphene, or longest defect-free CNTs. The theme of catalyst chemistry and structure, either as a nanoparticle or a planar substrate, is traced through the stages of nanocarbon formation, with focus on theoretically generalizable findings.

Type
Research Article
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bachilo, S.M., Balzano, L., Herrera, J.E., Pompeo, F., Resasco, D.E., Weisman, R.B., J. Am. Chem. Soc. 125, 11186 (2003).Google Scholar
Chiang, W.-H., Sankaran, R.M., Nat Mater. 8, 882 (2009).Google Scholar
Chiang, W.-H., Sakr, M., Gao, X.P.A., Sankaran, R.M., ACS Nano 3, 4023 (2009).CrossRefGoogle Scholar
Dupuis, A.-C., Prog. Mater. Sci. 50, 929 (2005).CrossRefGoogle Scholar
Jourdain, V., Bichara, C., Carbon 58, 2 (2013).Google Scholar
Bligaard, T., Nørskov, J.K., Dahl, S., Matthiesen, J., Christensen, C.H., Sehested, J., J. Catal. 224, 206 (2004).Google Scholar
Abild-Pedersen, F., Greeley, J., Studt, F., Rossmeisl, J., Munter, T.R., Moses, P.G., Skúlason, E., Bligaard, T., Nørskov, J.K., Phys. Rev. Lett. 99, 016105 (2007).Google Scholar
Nørskov, J.K., Bligaard, T., Logadottir, A., Bahn, S., Hansen, L.B., Bollinger, M., Bengaard, H., Hammer, B., Sljivancanin, Z., Mavrikakis, M., Xu, Y., Dahl, S., Jacobsen, C.J.H., J. Catal. 209, 275 (2002).Google Scholar
Robertson, J., J. Mater. Chem. 22, 19858 (2012).CrossRefGoogle Scholar
Penev, E.S., Artyukhov, V.I., Yakobson, B.I., ACS Nano 8, 1899 (2014).CrossRefGoogle Scholar
Pigos, E., Penev, E.S., Ribas, M.A., Sharma, R., Yakobson, B.I., Harutyunyan, A.R., ACS Nano 5, 10096 (2011).Google Scholar
Kuznetsov, V.L., Usoltseva, A.N., Chuvilin, A.L., Obraztsova, E.D., Bonard, J.-M., Phys. Rev. B Condens. Matter 64, 235401 (2001).CrossRefGoogle Scholar
Luo, M., Penev, E.S., Harutyunyan, A.R., Yakobson, B.I., J. Phys. Chem. C 121, 18789 (2017).CrossRefGoogle Scholar
Elliott, J.A., Shibuta, Y., Amara, H., Bichara, C., Neyts, E.C., Nanoscale 5, 6662 (2013).Google Scholar
Amara, H., Bichara, C., Top. Curr. Chem. 375, 55 (2017).Google Scholar
Frenkel, D., Smit, B., Understanding Molecular Simulation: From Algorithms to Applications (Academic Press, San Diego, 2002).Google Scholar
Landau, D.P., Binder, K., A Guide to Monte Carlo Simulations in Statistical Physics (Cambridge University Press, Cambridge, 2014).Google Scholar
Goringe, C.M., Bowler, D.R., Hernández, E., Rep. Prog. Phys. 60, 1447 (1997).Google Scholar
Dreizler, R.M., Gross, E.K.U., Density Functional Theory: An Approach to the Quantum Many-Body Problem (Springer, Berlin, 1996).Google Scholar
Neyts, E.C., Shibuta, Y., van Duin, A.C.T., Bogaerts, A., ACS Nano 4, 6665 (2010).Google Scholar
Battaile, C.C., Srolovitz, D.J., Annu. Rev. Mater. Res. 32, 297 (2002).Google Scholar
Zangwill, A., Vvedensky, D.D., Nano Lett. 11, 2092 (2011).Google Scholar
Grujicic, M., Cao, G., Gersten, B., Mater. Sci. Eng. B 94, 247 (2002).Google Scholar
Amara, H., Bichara, C., Ducastelle, F., Phys. Rev. Lett. 100, 056105 (2008).Google Scholar
Diarra, M., Zappelli, A., Amara, H., Ducastelle, F., Bichara, C., Phys. Rev. Lett. 109, 185501 (2012).Google Scholar
Magnin, Y., Zappelli, A., Amara, H., Ducastelle, F., Bichara, C., Phys. Rev. Lett. 115, 205502 (2015).Google Scholar
Gao, J., Yip, J., Zhao, J., Yakobson, B.I., Ding, F., J. Am. Chem. Soc. 133, 5009 (2011).Google Scholar
Hao, Y., Bharathi, M.S., Wang, L., Liu, Y., Chen, H., Nie, S., Wang, X., Chou, H., Tan, C., Fallahazad, B., Ramanarayan, H., Magnuson, C.W., Tutuc, E., Yakobson, B.I., McCarty, K.F., Zhang, Y.-W., Kim, P., Hone, J., Colombo, L., Ruoff, R.S., Science 342, 720 (2013).Google Scholar
Li, X., Magnuson, C.W., Venugopal, A., Tromp, R.M., Hannon, J.B., Vogel, E.M., Colombo, L., Ruoff, R.S., J. Am. Chem. Soc. 133, 2816 (2011).Google Scholar
Zhou, H., Yu, W.J., Liu, L., Cheng, R., Chen, Y., Huang, X., Liu, Y., Wang, Y., Huang, Y., Duan, X., Nat. Commun. 4 (2013), doi:10.1038/ncomms3096.Google Scholar
Chen, X., Zhao, P., Xiang, R., Kim, S., Cha, J., Chiashi, S., Maruyama, S., Carbon 94, 810 (2015).Google Scholar
Wu, T., Zhang, X., Yuan, Q., Xue, J., Lu, G., Liu, Z., Wang, H., Wang, H., Ding, F., Yu, Q., Xie, X., Jiang, M., Nat. Mater. 15, 43 (2016).Google Scholar
Wang, B., Ma, X., Caffio, M., Schaub, R., Li, W.-X., Nano Lett. 11, 424 (2011).Google Scholar
Yuan, Q., Gao, J., Shu, H., Zhao, J., Chen, X., Ding, F., J. Am. Chem. Soc. 134, 2970 (2012).Google Scholar
Wang, X., Yuan, Q., Li, J., Ding, F., Nanoscale 9, 11584 (2017).Google Scholar
Xu, X., Zhang, Z., Qiu, L., Zhuang, J., Zhang, L., Wang, H., Liao, C., Song, H., Qiao, R., Gao, P., Hu, Z., Liao, L., Liao, Z., Yu, D., Wang, E., Ding, F., Peng, H., Liu, K., Nat. Nanotechnol. 11, 930 (2016).CrossRefGoogle Scholar
Gao, L., Ren, W., Xu, H., Jin, L., Wang, Z., Ma, T., Ma, L.-P., Zhang, Z., Fu, Q., Peng, L.-M., Bao, X., Cheng, H.-M., Nat. Commun. 3 (2012), doi:10.1038/ncomms1702.Google Scholar
Geng, D., Wu, B., Guo, Y., Huang, L., Xue, Y., Chen, J., Yu, G., Jiang, L., Hu, W., Liu, Y., Proc. Natl. Acad. Sci. U.S.A. 109, 7992 (2012).Google Scholar
Artyukhov, V.I., Hao, Y., Ruoff, R.S., Yakobson, B.I., Phys. Rev. Lett. 114, 115502 (2015).Google Scholar
Xu, X., Zhang, Z., Dong, J., Yi, D., Niu, J., Wu, M., Lin, L., Yin, R., Li, M., Zhou, J., Wang, S., Sun, J., Duan, X., Gao, P., Jiang, Y., Wu, X., Peng, H., Ruoff, R.S., Liu, Z., Yu, D., Wang, E., Ding, F., Liu, K., Sci. Bull. 62, 1074 (2017).Google Scholar
Artyukhov, V.I., Liu, Y., Yakobson, B.I., Proc. Natl. Acad. Sci. U.S.A. 109, 15136 (2012).Google Scholar
Ma, T., Ren, W., Zhang, X., Liu, Z., Gao, Y., Yin, L.-C., Ma, X.-L., Ding, F., Cheng, H.-M., Proc. Natl. Acad. Sci. U.S.A. 110, 20386 (2013).Google Scholar
Zhang, X., Xu, Z., Hui, L., Xin, J., Ding, F., J. Phys. Chem. Lett. 3, 2822 (2012).CrossRefGoogle Scholar
Sekerka, R.F., Cryst. Res. Technol. 40, 291 (2005).Google Scholar
Rao, R., Liptak, D., Cherukuri, T., Yakobson, B.I., Maruyama, B., Nat. Mater. 11, 213 (2012).CrossRefGoogle Scholar
Nguyen, V.L., Shin, B.G., Duong, D.L., Kim, S.T., Perello, D., Lim, Y.J., Yuan, Q.H., Ding, F., Jeong, H.Y., Shin, H.S., Lee, S.M., Chae, S.H., Vu, Q.A., Lee, S.H., Lee, Y.H., Adv. Mater. 27, 1376 (2015).CrossRefGoogle Scholar
Yuan, Q., Yakobson, B.I., Ding, F., J. Phys. Chem. Lett. 5, 3093 (2014).Google Scholar
Yuan, Q., Song, G., Sun, D., Ding, F., Sci. Rep. 4 (2014), doi:10.1038/srep06541.Google Scholar
Dong, J., Wang, H., Peng, H., Liu, Z., Zhang, K., Ding, F., Chem. Sci. 8, 2209 (2017).CrossRefGoogle Scholar
MacKenzie, K.J., Dunens, O.M., Harris, A.T., Ind. Eng. Chem. Res. 49, 5323 (2010).Google Scholar
Yang, F., Wang, X., Zhang, D., Yang, J., Luo, D., Xu, Z., Wei, J., Wang, J.-Q., Xu, Z., Peng, F., Li, X., Li, R., Li, Y., Li, M., Bai, X., Ding, F., Li, Y., Nature 510, 522 (2014).Google Scholar
Zhang, S., Kang, L., Wang, X., Tong, L., Yang, L., Wang, Z., Qi, K., Deng, S., Li, Q., Bai, X., Ding, F., Zhang, J., Nature 543, 234 (2017).Google Scholar
Maiti, A., Brabec, C.J., Roland, C.M., Bernholc, J., Phys. Rev. Lett. 73, 2468 (1994).Google Scholar
Charlier, J.-C., Vita, A.D., Blase, X., Car, R., Science 275, 647 (1997).Google Scholar
Buongiorno Nardelli, M., Brabec, C., Maiti, A., Roland, C., Bernholc, J., Phys. Rev. Lett. 80, 313 (1998).Google Scholar
Shibuta, Y., Maruyama, S., Physica B 323, 187 (2002).Google Scholar
Ding, F., Bolton, K., Rosén, A., J. Phys. Chem. B 108, 17369 (2004).Google Scholar
Zhao, J., Martinez-Limia, A., Balbuena, P.B., Nanotechnology 16, S575 (2005).Google Scholar
Ribas, M.A., Ding, F., Balbuena, P.B., Yakobson, B.I., J. Chem. Phys. 131, 224501 (2009).Google Scholar
Zheng, G., Irle, S., Morokuma, K., J. Nanosci. Nanotechnol. 6, 1259 (2006).Google Scholar
Irle, S., Ohta, Y., Okamoto, Y., Page, A.J., Wang, Y., Morokuma, K., Nano Res. 2, 755 (2009).Google Scholar
Raty, J.-Y., Gygi, F., Galli, G., Phys. Rev. Lett. 95, 096103 (2005).Google Scholar
Ohta, Y., Okamoto, Y., Page, A.J., Irle, S., Morokuma, K., ACS Nano 3, 3413 (2009).Google Scholar
Xu, Z., Yan, T., Ding, F., Chem. Sci. 6, 4704 (2015).Google Scholar
Iijima, S., Nature 354, 56 (1991).Google Scholar
Burton, W.K., Cabrera, N., Frank, F.C., Nature 163, 398 (1949).Google Scholar
Ding, F., Harutyunyan, A.R., Yakobson, B.I., Proc. Natl. Acad. Sci. U.S.A. 106, 2506 (2009).Google Scholar
Marchand, M., Journet, C., Guillot, D., Benoit, J.-M., Yakobson, B.I., Purcell, S.T., Nano Lett. 9, 2961 (2009).Google Scholar
Liu, J., Wang, C., Tu, X., Liu, B., Chen, L., Zheng, M., Zhou, C., Nat. Commun. 3, 1199 (2012).Google Scholar
Li, H.-B., Page, A.J., Irle, S., Morokuma, K., J. Am. Chem. Soc. 134, 15887 (2012).Google Scholar
He, M., Jiang, H., Liu, B., Fedotov, P.V., Chernov, A.I., Obraztsova, E.D., Cavalca, F., Wagner, J.B., Hansen, T.W., Anoshkin, I.V., Obraztsova, E.A., Belkin, A.V., Sairanen, E., Nasibulin, A.G., Lehtonen, J., Kauppinen, E.I., Sci. Rep. 3, 1460 (2013).Google Scholar
Wang, H., Wei, L., Ren, F., Wang, Q., Pfefferle, L.D., Haller, G.L., Chen, Y., ACS Nano 7, 614 (2013).CrossRefGoogle Scholar
Liu, Y., Dobrinsky, A., Yakobson, B.I., Phys. Rev. Lett. 105, 235502 (2010).Google Scholar
Artyukhov, V.I., Liu, M., Penev, E.S., Yakobson, B.I., J. Chem. Phys. 146, 244701 (2017).Google Scholar
Artyukhov, V.I., Penev, E.S., Yakobson, B.I., Nat. Commun. 5, 4892 (2014).Google Scholar
Sanchez-Valencia, J.R., Dienel, T., Gröning, O., Shorubalko, I., Mueller, A., Jansen, M., Amsharov, K., Ruffieux, P., Fasel, R., Nature 512, 61 (2014).Google Scholar
Scott, L.T., Jackson, E.A., Zhang, Q., Steinberg, B.D., Bancu, M., Li, B., J. Am. Chem. Soc. 134, 107 (2012).Google Scholar
Nikolaev, P., Hooper, D., Perea-López, N., Terrones, M., Maruyama, B., ACS Nano 8, 10214 (2014).Google Scholar
Davenport, M., Chem. Eng. News 93, 10 (2015).Google Scholar
Xu, B., Kaneko, T., Shibuta, Y., Kato, T., Sci. Rep. 7, 11149 (2017).Google Scholar