Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-14T23:44:17.958Z Has data issue: false hasContentIssue false

Rapid microwave synthesis and optical activity of highly crystalline platinum nanocubes

Published online by Cambridge University Press:  14 January 2018

Clare Davis-Wheeler Chin
Affiliation:
Department of Chemistry and Advanced Materials Research Institute, University of New Orleans, New Orleans, LA 70148, USA
Sara Akbarian-Tefaghi
Affiliation:
Department of Chemistry and Advanced Materials Research Institute, University of New Orleans, New Orleans, LA 70148, USA
Juana Reconco-Ramirez
Affiliation:
Department of Chemistry and Advanced Materials Research Institute, University of New Orleans, New Orleans, LA 70148, USA
John B. Wiley*
Affiliation:
Department of Chemistry and Advanced Materials Research Institute, University of New Orleans, New Orleans, LA 70148, USA
*
Address all correspondence to John B. Wiley at jwiley@uno.edu
Get access

Abstract

We have developed a novel, facile, and reproducible synthesis of highly crystalline oleylamine-capped colloidal platinum nanocubes by microwave (MW) heating. Use of MW heating decreases reaction times, eliminates the need for dangerous reagents [e.g., Fe(CO)5], and gives efficient production of monodispersed 8 nm Pt nanocubes [MW-nanoparticles (NPs)]. We also present a study of the optical properties of these NPs, which to our knowledge has not been previously reported. Absorbance spectra of the MW-NPs show a distinct localized surface plasmon resonance band at 213 nm. This observation could be significant for developments in plasmonic photocatalysis and advanced catalytic materials.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Wang, C., Daimon, H., Onodera, T., Koda, T., and Sun, S.: A general approach to the size- and shape-controlled synthesis of platinum nanoparticles and their catalytic reduction of oxygen. Angew. Chem. Int. Ed. 47, 3588 (2008).Google Scholar
2. Peng, Z., and Yang, H.: Designer platinum nanoparticles: control of shape, composition in alloy, nanostructure and electrocatalytic property. Nano Today 4, 143 (2009).CrossRefGoogle Scholar
3. Long, N.V., Chien, N.D., Hayakawa, T., Hirata, H., Lakshminarayana, G., and Nogami, M.: The synthesis and characterization of platinum nanoparticles: a method of controlling the size and morphology. Nanotechnology 21, 035605 (2010).CrossRefGoogle ScholarPubMed
4. Long, N.V., Thi, C.M., Nogami, M., and Ohtaki, M.: Novel issues of morphology, size, and structure of Pt nanoparticles in chemical engineering: surface attachment, aggregation or agglomeration, assembly, and structural changes. New J. Chem. 36, 1320 (2012).CrossRefGoogle Scholar
5. Leong, G.J., Schulze, M.C., Strand, M.B., Maloney, D., Frisco, S.L., Dinh, H.N., Pivovar, B., and Richards, R.M.: Shape-directed platinum nanoparticle synthesis: nanoscale design of novel catalysts: a review of shape-directed platinum nanoparticle synthesis. Appl. Organomet. Chem. 28, 1 (2014).Google Scholar
6. Chen, J., Lim, B., Lee, E.P., and Xia, Y.: Shape-controlled synthesis of platinum nanocrystals for catalytic and electrocatalytic applications. Nano Today 4, 81 (2009).Google Scholar
7. Bonnemann, H., and Khelashvili, G.: Efficient fuel cell catalysts emerging from organometallic chemistry. Appl. Organomet. Chem. 24, 257 (2010).CrossRefGoogle Scholar
8. Kang, Y., Li, M., Cai, Y., Cargnello, M., Diaz, R.E., Gordon, T.R., Wieder, N.L., Adzic, R.R., Gorte, R.J., Stach, E.A., and Murray, C.B.: Heterogeneous catalysts need not be so “heterogeneous”: monodisperse Pt nanocrystals by combining shape-controlled synthesis and purification by colloidal recrystallization. J. Am. Chem. Soc. 135, 2741 (2013).Google Scholar
9. Kelly, K.L., Coronado, E., Zhao, L.L., and Schatz, G.C.: The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J. Phys. Chem. B 107, 668 (2003).Google Scholar
10. Rostamzadeh, T., Adireddy, S., and Wiley, J.B.: Formation of scrolled silver vanadate nanopeapods by both capture and insertion strategies. Chem. Mater. 27, 3694 (2015).CrossRefGoogle Scholar
11. Gharibshahi, E., and Saion, E.: Influence of dose on particle size and optical properties of colloidal platinum nanoparticles. Int. J. Mol. Sci. 13, 14723 (2012).CrossRefGoogle ScholarPubMed
12. Wang, C., Daimon, H., Lee, Y., Kim, J., and Sun, S.: Synthesis of monodisperse Pt nanocubes and their enhanced catalysis for oxygen reduction. J. Am. Chem. Soc. 129, 6974 (2007).Google Scholar
13. Kang, Y., Pyo, J.B., Ye, X., Diaz, R.E., Gordon, T.R., Stach, E.A., and Murray, C.B.: Shape-controlled synthesis of Pt nanocrystals: the role of metal carbonyls. ACS Nano 7, 645 (2013).CrossRefGoogle ScholarPubMed
14. Rioux, R.M., Song, H., Grass, M., Habas, S., Niesz, K., Hoefelmeyer, J.D., Yang, P., and Somorjai, G.A.: Monodisperse platinum nanoparticles of well-defined shape: synthesis, characterization, catalytic properties and future prospects. Top. Catal. 39, 167 (2006).Google Scholar
15. Miyabayashi, K., Nakamura, S., and Miyake, M.: Synthesis of small platinum cube with less than 3 nm by the control of growth kinetics. Cryst. Growth Des. 11, 4292 (2011).CrossRefGoogle Scholar
16. Dahal, N., García, S., Zhou, J., and Humphrey, S.M.: Beneficial effects of microwave-assisted heating versus conventional heating in noble metal nanoparticle synthesis. ACS Nano 6, 9433 (2012).CrossRefGoogle ScholarPubMed
17. Hayes, B.L.: Microwave Synthesis––Chemistry at the Speed of Light (CEM Publishing, Matthews, NC, 2002).Google Scholar
18. Baghbanzadeh, M., Carbone, L., Cozzoli, P.D., and Kappe, C.O.: Microwave-assisted synthesis of colloidal inorganic nanocrystals. Angew. Chem. Int. Ed. 50, 11312 (2011).Google Scholar
19. Komarneni, S., Li, D., Newalkar, B., Katsuki, H., and Bhalla, A.S.: Microwave−polyol process for Pt and Ag nanoparticles. Langmuir 18, 5959 (2002).Google Scholar
20. Yu, W., Tu, W., and Liu, H.: Synthesis of nanoscale platinum colloids by microwave dielectric heating. Langmuir 15, 6 (1999).CrossRefGoogle Scholar
21. Wang, Y., Ren, J., Deng, K., Gui, L., and Tang, Y.: Preparation of tractable platinum, rhodium, and ruthenium nanoclusters with small particle size in organic media. Chem. Mater. 12, 1622 (2000).Google Scholar
22. Creighton, J.A., and Eadon, D.G.: Ultraviolet–visible absorption spectra of the colloidal metallic elements. J. Chem. Soc. Faraday Trans. 87, 3881 (1991).CrossRefGoogle Scholar
23. Duff, D.G., Edwards, P.P., and Johnson, B.F.: Formation of a polymer-protected platinum sol: a new understanding of the parameters controlling morphology. J. Phys. Chem. 99, 15934 (1995).Google Scholar
24. Furlong, D.N., Launikonis, A., Sasse, W.H., and Sanders, J.V.: Colloidal platinum sols. Preparation, characterization and stability towards salt. J. Chem. Soc. Faraday Trans. 1 Phys. Chem. Condens. Phases 80, 571 (1984).Google Scholar
25. Henglein, A., Ershov, B.G., and Malow, M.: Absorption spectrum and some chemical reactions of colloidal platinum in aqueous solution. J. Phys. Chem. 99, 14129 (1995).CrossRefGoogle Scholar
26. Rivadulla, J.F., Vergara, M.C., Blanco, M.C., Lopez-Quintela, M.A., and Rivas, J.: Optical properties of platinum particles synthesized in microemulsions. J. Phys. Chem. B 101, 8997 (1997).CrossRefGoogle Scholar
27. Shiraishi, Y., Tsukamoto, D., Sugano, Y., Shiro, A., Ichikawa, S., Tanaka, S., and Hirai, T.: Platinum nanoparticles supported on anatase titanium dioxide as highly active catalysts for aerobic oxidation under visible light irradiation. ACS Catal. 2, 1984 (2012).Google Scholar
28. Zhang, N., Han, C., Xu, Y.-J., Foley, J.J., Zhang, D., Codrington, J., Gray, S.K., and Sun, Y.: Near-field dielectric scattering promotes optical absorption by platinum nanoparticles. Nat. Photonics 10, 473 (2016).CrossRefGoogle Scholar
29. Davey, W.P.: Precision measurements of the lattice constants of twelve common metals. Phys. Rev. 25, 753 (1925).Google Scholar
30. Boita, J., Nicolao, L., Alves, M.C.M., and Morais, J.: Observing Pt nanoparticle formation at the atomic level during polyol synthesis. Phys. Chem. Chem. Phys. 16, 17640 (2014).CrossRefGoogle ScholarPubMed
31. Zhang, H.-T., Ding, J., and Chow, G.-M.: Morphological control of synthesis and anomalous magnetic properties of 3-D branched Pt nanoparticles. Langmuir 24, 375 (2008).Google Scholar
32. Bigall, N.C., Härtling, T., Klose, M., Simon, P., Eng, L.M., and Eychmüller, A.: Monodisperse platinum nanospheres with adjustable diameters from 10 to 100 nm: synthesis and distinct optical properties. Nano Lett.. 8, 4588 (2008).CrossRefGoogle ScholarPubMed
33. Zhang, X., Chen, Y.L., Liu, R.-S., and Tsai, D.P.: Plasmonic photocatalysis. Rep. Prog. Phys. 76, 046401 (2013).Google Scholar
34. Janata, E., Henglein, A., and Ershov, B.: Chain mechanism of radical-initiated ligand exchange in PtCl42- in aqueous solution. J. Phys. Chem. 100, 1989 (1996).CrossRefGoogle Scholar
35. Langhammer, C., Yuan, Z., Zorić, I., and Kasemo, B.: Plasmonic properties of supported Pt and Pd nanostructures. Nano Lett.. 6, 833 (2006).Google Scholar
36. Zhang, X., Li, P., Barreda, Á., Gutiérrez, Y., González, F., Moreno, F., Everitt, H.O., and Liu, J.: Size-tunable rhodium nanostructures for wavelength-tunable ultraviolet plasmonics. Nanoscale Horiz. 1, 75 (2016).Google Scholar
Supplementary material: File

Davis-Wheeler Chin et al. supplementary material

Davis-Wheeler Chin et al. supplementary material 1

Download Davis-Wheeler Chin et al. supplementary material(File)
File 2.4 MB