Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-14T23:49:55.872Z Has data issue: false hasContentIssue false

Optimizing thermal conduction in bulk polycrystalline SrTiO3−δ ceramics via oxygen non-stoichiometry

Published online by Cambridge University Press:  14 November 2018

Arash Mehdizadeh Dehkordi
Affiliation:
Department of Materials Science and Engineering, Clemson University, Clemson, SC 29634, USA
Sriparna Bhattacharya*
Affiliation:
Department of Physics and Astronomy, Clemson Nanomaterials Institute, Clemson University, Clemson, SC 29634, USA
Taghi Darroudi
Affiliation:
Electron Microscope Facility, Clemson Research Park, Clemson University, Clemson, SC 29634, USA
Mehmet Karakaya
Affiliation:
Department of Physics and Astronomy, Clemson Nanomaterials Institute, Clemson University, Clemson, SC 29634, USA
Courtney Kucera
Affiliation:
Department of Materials Science and Engineering, Clemson University, Clemson, SC 29634, USA Center for Optical Materials Science and Engineering Technologies (COMSET), Clemson University, Clemson, SC 29634, USA
John Ballato
Affiliation:
Department of Materials Science and Engineering, Clemson University, Clemson, SC 29634, USA Center for Optical Materials Science and Engineering Technologies (COMSET), Clemson University, Clemson, SC 29634, USA
Rasheed Adebisi
Affiliation:
Department of Physics and National Center for Physical Acoustics, University of Mississippi, Oxford, MS 38677, USA
Joseph R. Gladden
Affiliation:
Department of Physics and National Center for Physical Acoustics, University of Mississippi, Oxford, MS 38677, USA
Ramakrishna Podila
Affiliation:
Department of Physics and Astronomy, Clemson Nanomaterials Institute, Clemson University, Clemson, SC 29634, USA Center for Optical Materials Science and Engineering Technologies (COMSET), Clemson University, Clemson, SC 29634, USA
Apparao M. Rao
Affiliation:
Department of Physics and Astronomy, Clemson Nanomaterials Institute, Clemson University, Clemson, SC 29634, USA Center for Optical Materials Science and Engineering Technologies (COMSET), Clemson University, Clemson, SC 29634, USA
Husam N. Alshareef
Affiliation:
Materials Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
Terry M. Tritt
Affiliation:
Department of Materials Science and Engineering, Clemson University, Clemson, SC 29634, USA Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, USA
*
Address all correspondence to Sriparna Bhattacharya at bbhatta@g.clemson.edu
Get access

Abstract

While SrTiO3 exhibits promising electronic transport properties, its high thermal conductivity (κ) is detrimental for its use as a thermoelectric material. Here, we investigate the influence of oxygen non-stoichiometry on κ in bulk SrTiO3 ceramics. A significant reduction in κ was achieved in oxygen deficient SrTiO3−δ, owing to the presence of oxygen vacancies that act as phonon scattering centers. Upon oxidation of SrTiO3−δ, the κ of pristine SrTiO3 was recovered, suggesting that oxygen vacancies were indeed responsible for the reduction in κ. Raman spectroscopy was used as an independent tool to confirm the reduction of oxygen vacancies in SrTiO3−δ upon oxidation.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Schooley, J.F., Hosler, W.R., and Cohen, M.L.: Superconductivity in semiconducting SrTiO3. Phys. Rev. Lett. 12, 474 (1964).10.1103/PhysRevLett.12.474Google Scholar
2.Mitra, C., Lin, C., Robertson, J., and Demkov, A.A.: Electronic structure of oxygen vacancies in SrTiO3 and LaAlO3. Phys. Rev. B 86, 155105 (2012).10.1103/PhysRevB.86.155105Google Scholar
3.Kan, D., Terashima, T., Kanda, R., Masuno, A., Tanaka, K., Chu, S., Kan, H., Ishizumi, A., Kanemitsu, Y., Shimakawa, Y., and Takano, M.: Blue-light emission at room temperature from Ar+-irradiated SrTiO3. Nat. Mater. 4, 816 (2005).10.1038/nmat1498Google Scholar
4.Szot, K., Speier, W., Bihlmayer, G., and Waser, R.: Switching the electrical resistance of individual dislocations in single-crystalline SrTiO3. Nat. Mater. 5, 312 (2006).10.1038/nmat1614Google Scholar
5.Janousch, M., Meijer, G.I., Staub, U., Delley, B., Karg, S.E., and Andreasson, B.P.: Role of oxygen vacancies in Cr-doped SrTiO3 for resistance-change memory. Adv. Mater. 19, 2232 (2007).10.1002/adma.200602915Google Scholar
6.Rice, W.D., Ambwani, P., Thompson, J.D., Leighton, C., and Crooker, S.A.: Revealing optically induced magnetization in SrTiO3 using optically coupled SQUID magnetometry and magnetic circular dichroism. J. Vac. Sci. Technol. B, Nanotechnol. Microelectron. Mater. Process. Meas. Phenom. 32, 04E102 (2014).Google Scholar
7.Yoshida, I.: Thermal conduction in ferroelectric ceramics. J. Phys. Soc. Jpn. 15, 2211 (1960).10.1143/JPSJ.15.2211Google Scholar
8.Suemune, Y.: Thermal conductivity of BaTiO3 and SrTiO3 from 4.5 to 300 K. J. Phys. Soc. Jpn. 20, 174 (1965).10.1143/JPSJ.20.174Google Scholar
9.Steigmeier, E.F.: Field effect on the Cochran modes in SrTiO3 and KTaO3. Phys. Rev. 168, 523 (1968).10.1103/PhysRev.168.523Google Scholar
10.Wang, Y., Fujinami, K., Zhang, R., Wan, C., Wang, N., Ba, Y., and Koumoto, K.: Interfacial thermal resistance and thermal conductivity in nanograined SrTiO3. Appl. Phys. Express 3, 031101 (2010).10.1143/APEX.3.031101Google Scholar
11.Breckenfeld, E., Wilson, R., Karthik, J., Damodaran, A.R., Cahill, D.G., and Martin, L.W.: Effect of growth induced (non)stoichiometry on the structure, dielectric response, and thermal conductivity of SrTiO3 thin films. Chem. Mater. 24, 331 (2012).10.1021/cm203042qGoogle Scholar
12.Foley, B.M., Brown-Shaklee, H.J., Duda, J.C., Cheaito, R., Gibbons, B.J., Medlin, D., Ihlefeld, J.F., and Hopkins, P.E.: Thermal conductivity of nano-grained SrTiO3 thin films. Appl. Phys. Lett. 101, 231908 (2012).10.1063/1.4769448Google Scholar
13.Oh, D.-W., Ravichandran, J., Liang, C.-W., Siemons, W., Jalan, B., Brooks, C.M., Huijben, M., Schlom, D.G., Stemmer, S., Martin, L.W., Majumdar, A., Ramesh, R., and Cahill, D.G.: Thermal conductivity as a metric for the crystalline quality of SrTiO3 epitaxial layers. Appl. Phys. Lett. 98, 221904 (2011).10.1063/1.3579993Google Scholar
14.Popuri, S.R., Scott, A.J.M., Downie, R.A., Hall, M.A., Suard, E., Decourt, R., Pollet, M., and Bos, J.W.G.: Glass-like thermal conductivity in SrTiO3 thermoelectrics induced by A-site vacancies. RSC Adv. 4, 33720 (2014).10.1039/C4RA06871HGoogle Scholar
15.Zhang, B., Wang, J., Zou, T., Zhang, S., Yaer, X., Ding, N., Liu, C., Miao, L., Li, Y., and Wu, Y.: High thermoelectric performance of Nb-doped SrTiO3 bulk materials with different doping levels. J. Mater. Chem. C 3, 11406 (2015).10.1039/C5TC02016FGoogle Scholar
16.Srivastava, D., Norman, C., Azough, F., Schäfer, M.C., Guilmeau, E., and Freer, R.: Improving the thermoelectric properties of SrTiO3-based ceramics with metallic inclusions. J. Alloys Compd. 731, 723 (2018).10.1016/j.jallcom.2017.10.033Google Scholar
17.Bhattacharya, S., Mehdizadeh Dehkordi, A., Tennakoon, S., Adebisi, R., Gladden, J.R., Darroudi, T., Alshareef, H.N., and Tritt, T.M.: Role of phonon scattering by elastic strain field in thermoelectric Sr1−xYxTiO3−δ. J. Appl. Phys. 115, 223712 (2014).10.1063/1.4882377Google Scholar
18.Bhattacharya, S., Dehkordi, A.M., Alshareef, H.N., and Tritt, T.M.: Synthesis-property relationship in thermoelectric Sr1−xYbxTiO3−δ ceramics. J. Phys. D: Appl. Phys. 47, 385302 (2014).10.1088/0022-3727/47/38/385302Google Scholar
19.Mehdizadeh Dehkordi, A., Bhattacharya, S., Darroudi, T., Graff, J.W., Schwingenschlögl, U., Alshareef, H.N., and Tritt, T.M.: Large thermoelectric power factor in Pr-doped SrTiO3−δ ceramics via grain-boundary-induced mobility enhancement. Chem. Mater. 26, 2478 (2014).10.1021/cm4040853Google Scholar
20.Dehkordi, A.M., Bhattacharya, S., He, J., Alshareef, H.N., and Tritt, T.M.: Significant enhancement in thermoelectric properties of polycrystalline Pr-doped SrTiO3−δ ceramics originating from nonuniform distribution of Pr dopants. Appl. Phys. Lett. 104, 3 (2014).10.1063/1.4875925Google Scholar
21.Puneet, P., Podila, R., Karakaya, M., Zhu, S., He, J., Tritt, T.M., Dresselhaus, M.S., and Rao, A.M.: Preferential scattering by interfacial charged defects for enhanced thermoelectric performance in few-layered n-type Bi2Te3. Sci. Rep. 3, 1 (2013).10.1038/srep03212Google Scholar
22.Liu, F., Hu, L., Karakaya, M., Puneet, P., Rao, R., Podila, R., Bhattacharya, S., and Rao, A.M.: A micro-Raman study of exfoliated few-layered n-type Bi2Te2.7Se0.3. Sci. Rep. 7, 16535 (2017).10.1038/s41598-017-16479-yGoogle Scholar
23.Khasimsaheb, B., Neeleshwar, S., Srikanth, M., Bathula, S., Gahtori, B., Srivsatava, A.K., Dhar, A., Sankarakumar, A., Panigrahi, B.K., Bhattacharya, S., Polida, R., and Rao, A.M.: Thermoelectric properties of spark plasma sintered lead telluride nanocubes. J. Mater. Res. 30, 1 (2015).10.1557/jmr.2015.227Google Scholar
24.Momma, K. and Izumi, F.: VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 44, 1272 (2011).10.1107/S0021889811038970Google Scholar
25.Kraus, W. and Nolze, G.: POWDER CELL – A program for the representation and manipulation of crystal structures and calculation of the resulting x-ray powder patterns. J. Appl. Crystallogr. 29, 301 (1996).10.1107/S0021889895014920Google Scholar
26.Boultif, A. and Louër, D.: Powder pattern indexing with the dichotomy method. J. Appl. Crystallogr. 37, 724 (2004).10.1107/S0021889804014876Google Scholar
27.Pope, A.L., Zawilski, B., and Tritt, T.M.: Description of removable sample mount apparatus for rapid thermal conductivity measurements. Cryogenics (Guildf). 41, 725 (2001).10.1016/S0011-2275(01)00140-0Google Scholar
28.Li, G. and Gladden, J.R.: High temperature resonant ultrasound spectroscopy: a review. Int. J. Spectrosc. 2010, 1 (2010).Google Scholar
29.Gong, W., Yun, H., Ning, Y.B., Greedan, J.E., Datars, W.R., and Stager, C.V.: Oxygen-deficient SrTiO3−x, x = 0.28, 0.17, and 0.08. crystal growth, crystal structure, magnetic, and transport properties. J. Solid State Chem. 90, 320 (1991).10.1016/0022-4596(91)90149-CGoogle Scholar
30.Tritt, T.M.: Thermoelectric phenomena, materials, and applications. Annu. Rev. Mater. Res. 41, 433 (2011).10.1146/annurev-matsci-062910-100453Google Scholar
31.Migliori, A., Sarrao, J.L., Visscher, W.M., Bell, T.M., Lei, M., Fisk, Z., and Leisure, R.G.: Resonant ultrasound spectroscopic techniques for measurement of the elastic moduli of solids. Phys. B: Condens. Matter 183, 1 (1993).10.1016/0921-4526(93)90048-BGoogle Scholar
32.Callaway, J.: Model for lattice thermal conductivity at low temperatures. Phys. Rev. 113, 1046 (1959).10.1103/PhysRev.113.1046Google Scholar
33.Klemens, P.: Thermal resistance due to point defects at high temperatures. Phys. Rev. 119, 507 (1960).10.1103/PhysRev.119.507Google Scholar
34.Klemens, P.G.: Phonon scattering by oxygen vacancies in ceramics. Phys. B: Condens. Matter 263–264, 102 (1999).10.1016/S0921-4526(98)01202-2Google Scholar
35.Nilsen, W.G. and Skinner, J.G.: Raman spectrum of strontium titanate. J. Chem. Phys. 48, 2240 (1968).10.1063/1.1669418Google Scholar
36.Tenne, D.A., Gonenli, I.E., Soukiassian, A., Schlom, D.G., Nakhmanson, S.M., Rabe, K.M., and Xi, X.X.: Raman study of oxygen reduced and re-oxidized strontium titanate. Phys. Rev. B – Condens. Matter Mater. Phys. 76, 1 (2007).10.1103/PhysRevB.76.024303Google Scholar