Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-11T01:56:57.779Z Has data issue: false hasContentIssue false

Impact of Alpinia galanga and zinc on semen quality and some reproductive hormone constituents in California rabbit bucks

Published online by Cambridge University Press:  16 February 2023

M.E. El-Speiy
Affiliation:
Animal Production Research Institute, Agricultural Research Center, Egypt
M.A. El-Sawy
Affiliation:
Animal Production Research Institute, Agricultural Research Center, Egypt
T.A. Sadaka
Affiliation:
Animal Production Research Institute, Agricultural Research Center, Egypt
M.A. Abd-Elaal
Affiliation:
Animal Production Research Institute, Agricultural Research Center, Egypt
M.R. Habib
Affiliation:
Animal Production Research Institute, Agricultural Research Center, Egypt
M.M. Abdella
Affiliation:
Animal Production Research Institute, Agricultural Research Center, Egypt
Mostafa S.A. Khattab*
Affiliation:
Dairy Department, National Research Centre, Dokki, Giza, Egypt, 12622
*
Author for correspondence: Mostafa S. A. Khattab. Dairy Department, National Research Centre, Dokki, Giza, Egypt, 12622. E-mails: ms.khattab@nrc.sci.eg; msakhattab@gmail.com

Summary

The objective of the current study was to investigate the influence of synergism of the dry powder of Alpinia galanga rhizomes (AGR) and/or zinc sulfate in the diet on semen quality and reproductive traits of California rabbit bucks. The study was conducted in two stages. First stage: appreciation of semen characteristics, 36 California rabbit bucks (aged 5 months) with average body weights of 2980 g were divided randomly into six treatments (six individuals each). The treatment groups were: first group, control fed basal diet (C); second group, fed basal diet plus 1 g AGR/kg dry matter (DM) (AGR1); third group, fed basal diet plus 2 g AGR/kg DM (AGR2); fourth group, fed basal diet plus 200 mg Zn/litre drinking water (Zn); fifth group, fed basal diet plus 1 g AGR/kg DM and 200 mg Zn/litre drinking water (AGR1 + Zn); sixth group, fed basal diet plus 2 g AGR/kg DM and 200 mg Zn/litre drinking water (AGR2 + Zn). Second stage: the previous bucks were used to determine the efficiency of semen on reproductive fertility traits, 48 mature does (aged 6 months, nulliparous) with an average body weight of 3050 ± 20.7 g were divided randomly into six treatments and inseminated with previous groups of treated bucks. The results of the first stage, recorded high activity on gonadotropins hormones: follicle-stimulating hormone (FSH) and luteinizing hormone (LH), free testosterone (FT), progesterone (P4) and oestrogen (E217β) concentrations for AGR1 + Zn and AGR2 + Zn compared with the control group. Groups AGR1, AGR2, AGR1 + Zn and AGR2 + Zn had significantly lowered concentrations of triglycerides, total cholesterol, low-density lipoprotein, and malondialdehyde (MDA), whereas high-density lipoprotein and total antioxidant capacity (TAC) were increased significantly compared with the control group. The group supplemented with AGR with or without Zn had significantly improved ejaculate volume, advanced motility, sperm concentration, and cell integrity. Fertility rate and litter size were improved in all groups compared with the control. It was concluded that supplementing diets with Alpinia galanga and Zn significantly increased sperm percentage, motility and reproductive hormones (testosterone, FSH, LH, E217β, P4). This suggested that this plant when used may be favourable for improved sperm quality and fertility parameters.

Type
Research Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abdel-Azeem, S. A. and Basyony, M. M. (2019). Some blood biochemical, antioxidant biomarkers, lipid peroxidation, productive performance and carcass traits of broiler chicks supplemented with Alpinia galangal rhizomes extract during heat stress. Egyptian Poultry Science 39(II), 345363.CrossRefGoogle Scholar
Abdel-Wareth, A. A. A., Al-Kahtani, M. A., Alsyaad, K. M., Shalaby, F. M., Saadeldin, I. M., Alshammari, F. A., Mobashar, M., Suleiman, M. H. A., Ali, A. H. H., Taqi, M. O., El-Sayed, H. G. M., El-Sadek, M. S. A., Metwally, A. E. and Ahmed, A. E. (2020). Combined supplementation of nano-zinc oxide and thyme oil improves the nutrient digestibility and reproductive fertility in the male Californian rabbits. Animals: An Open Access Journal from MDPI, 10(12), 112. doi: 10.3390/ani10122234 CrossRefGoogle ScholarPubMed
Abdullah, F., Subramanian, P., Ibrahim, H., Abdul Malek, S. N., Lee, G. S. and Hong, S. L. (2015). Chemical composition, antifeedant, repellent, and toxicity activities of the rhizomes of galangal, Alpinia galanga against Asian subterranean termites, Coptotermes gestroi and Coptotermes curvignathus (Isoptera: Rhinotermitidae). Journal of Insect Science, 15(1), 175. doi: 10.1093/jisesa/ieu175 CrossRefGoogle ScholarPubMed
Adams, C. E. (1981). Artificial insemination in the rabbit. The technique and application to practice. Journal of Applied Rabbit Research, 4, 1013.Google Scholar
Akbar, S. (2020). Alpinia officinarum Hance. (Zingiberaceae). I Handbook of 200 Medicinal Plants. Com/chapter/10.1007%2F978-3-030-16807-0_20. Springer, pp. 217224. https://link.springer CrossRefGoogle Scholar
Amen, M. H. M. and Muhammad, S. S. (2016). Effect of zinc supplementation on some physiological and growth traits in local male rabbit. World Veterinary Journal, 6(3), 151155.Google Scholar
AOAC. (2000). Official methods of analysis (17th ed). Association of Official Analytical Chemists, Washington. DC.Google Scholar
Baiomy, A., Hassanien, H. and Emam, K. (2018). Effect of zinc oxide levels supplementation on semen characteristics and fertility rate of bucks rabbits under subtropical conditions. Egyptian Journal of Rabbit Science, 28(2), 395406. doi: 10.21608/ejrs.2018.44320 CrossRefGoogle Scholar
Basri, A. M., Taha, H. and Ahmad, N. (2017). A review on the pharmacological activities and phytochemicals of Alpinia officinarum (galangal) extracts derived from bioassay-guided fractionation and isolation. Pharmacognosy Reviews, 11(21), 4356. doi: 10.4103/phrev.phrev_55_16 Google ScholarPubMed
Bebars, N. M. A. E., El Habeby, M. M., Issa, N. M. and El-Dien, N. M. N. and Nermeen. (2021) Effect of Alpinia officinarum rhizome extract on fertility and sexual behavior of adult male albino rats treated with sotalol. Egyptian Journal of Hospital Medicine (July), 84(1), 22852296. doi: 10.21608/ejhm.2021.183254 CrossRefGoogle Scholar
Boiko, О. V., Honchar, О. F., Lesyk, Y. V., Kovalchuk, І. І. and Gutyj, B. V. (2020). Effect of zinc nanoaquacitrate on the biochemical and productive parameters of the organism of rabbits. Regulatory Mechanisms in Biosystems, 11(2), 243248. doi: 10.15421/022036 CrossRefGoogle Scholar
Bolt, D. J. R. and Rollins, R. (1983). Development and application of a radioimmunoassay for bovine follicle-stimulating hormone. Journal of Animal Science, 56(1), 146154. doi: 10.2527/jas1983.561146x CrossRefGoogle ScholarPubMed
Boussin, D. (1989). Reproduction et insémination artificielle en cuniculture. Association Francaise de Cuniculture.Google Scholar
Chia, S. E., Ong, C. N., Chua, L. H., Ho, L. M. and Tay, S. K. (2000). Comparison of zinc concentrations in blood and seminal plasma and the various sperm parameters between fertile and infertile men. Journal of Andrology, 21(1), 5357.Google ScholarPubMed
Duncan, D. B. (1955). Multiple range and multiple F tests. Biometrics, 11(1), 1142. doi: 10.2307/3001478 CrossRefGoogle Scholar
El Harchaoui, K., Arsenault, B. J., Franssen, R., Després, J. P., Hovingh, G. K., Stroes, E. S., Otvos, J. D., Wareham, N. J., Kastelein, J. J., Khaw, K. T. and Boekholdt, S. M. (2009). High-density lipoprotein particle size and concentration and coronary risk. Annals of Internal Medicine, 150(2), 8493. doi: 10.7326/0003-4819-150-2-200901200-00006 CrossRefGoogle ScholarPubMed
El-Speiy, M. E. and El-Hanoun, A. M. (2013). Effect of queracetin (onion juice) and zinc sulfate on reproductive performance of male rabbits under hot summer conditions. Egypt. Poultry Science, 33(II), 331347.Google Scholar
El-Zaher, H. M., Eid, S. Y., Shaaban, M. M., Ahmed-Farid, O. A., Abd El Tawab, A. M. and Khattab, M. S. A. (2021). Ovarian activity and antioxidant indices during estrous cycle of Barki ewes under effect of thyme, celery and salinomycin as feed additives. Zygote, 29(2), 155160. doi: 10.1017/S0967199420000611 CrossRefGoogle ScholarPubMed
Fedder, M. D., Jakobsen, H. B., Giversen, I., Christensen, L. P., Parner, E. T. and Fedder, J. (2014). An extract of pomegranate fruit and galangal rhizome increases the numbers of motile sperm: A prospective, randomised, controlled, double-blinded trial. PLOS ONE, 9(9), e108532. doi: 10.1371/journal.pone.0108532 CrossRefGoogle ScholarPubMed
Fossati, P. and Prencipe, L. (1982). Serum triglycerides determined colorimetrically with an enzyme that produces hydrogen peroxide. Clinical Chemistry, 28(10), 20772080. doi: 10.1093/clinchem/28.10.2077 CrossRefGoogle ScholarPubMed
Friedewald, W. T., Levy, R. I. and Fredrickson, D. S. (1972). Estimation of the concentration of low-density lipoprotein cholesterolin plasma, without use of the preparative ultracentrifuge. Clinical Chemistry, 18(6), 499502. doi: 10.1093/clinchem/18.6.499 CrossRefGoogle Scholar
Ghasemzadeh, A., Jaafar, H. Z. and Rahmat, A. (2010). Antioxidant activities, total phenolics and flavonoids content in two varieties of Malaysia young ginger (Zingiber officinale Roscoe). Molecules, 15(6), 43244333. doi: 10.3390/molecules15064324 CrossRefGoogle ScholarPubMed
Hiai, S., Oura, H. and Nakajima, T. (1976). Color reaction of some sapogenins and saponins with vanillin and sulfuric acid. Planta Medica, 29(2), 116122. doi: 10.1055/s-0028-1097639 CrossRefGoogle ScholarPubMed
Honmore, V. S., Kandhare, A. D., Kadam, P. P., Khedkar, V. M., Sarkar, D., Bodhankar, S. L., Zanwar, A. A., Rojatkar, S. R. and Natu, A. D. (2016). Isolates of Alpinia officinarum Hance as COX-2 inhibitors: Evidence from anti-inflammatory, antioxidant and molecular docking studies. International Immunopharmacology, 33, 817. doi: 10.1016/j.intimp.2016.01.024 CrossRefGoogle ScholarPubMed
Ippoushi, K., Ito, H., Horie, H. and Azuma, K. (2005). Mechanism of inhibition of peroxynitrite-induced oxidation and nitration by [6]-gingerol. Planta Medica, 71(6), 563566. doi: 10.1055/s-2005-864160 CrossRefGoogle ScholarPubMed
Jantan, I., Rafi, I. A. and Jalil, J. (2005). Platelet-activating factor (PAF) receptor-binding antagonist activity of Malaysian medicinal plants. Phytomedicine, 12(1–2), 8892. doi: 10.1016/j.phymed.2003.06.006 CrossRefGoogle ScholarPubMed
Kaur, C. and Kapoor, H. C. (2002). Antioxidant activity and total phenolic content of some Asian vegetables. International Journal of Food Science and Technology, 37(2), 153161. doi: 10.1046/j.1365-2621.2002.00552.x CrossRefGoogle Scholar
Kaushik, P., Kaushik, D., Yadav, J. and Pahwa, P. (2013). Protective effect of Alpinia galanga in STZ induced diabetic nephropathy. Pakistan Journal of Biological Sciences, 16(16), 804811. doi: 10.3923/pjbs.2013.804.811 CrossRefGoogle ScholarPubMed
Kolangi, F., Shafi, H., Memariani, Z., Kamalinejad, M., Bioos, S., Jorsaraei, S. G. A., Bijani, A., Shirafkan, H. and Mozaffarpur, S. A. (2019) Effect of Alpinia officinarum Hance rhizome extract on spermatogram factors in men with idiopathic infertility: A prospective double-blinded randomised clinical trial. Andrologia, 51(1), e13172. doi: 10.1111/and.13172 CrossRefGoogle ScholarPubMed
Kumar, N., Verma, R. P., Singh, L. P., Varshney, V. P. and Dass, R. S. (2006). Effect of different levels and sources of zinc supplementation on quantitative and qualitative semen attributes and serum testosterone level in crossbred cattle (Bos indicus × Bos taurus) bulls. Reproduction, Nutrition, Development, 46(6), 663675. doi: 10.1051/rnd:2006041 CrossRefGoogle ScholarPubMed
Kumar, S. and Alagawadi, K. R. (2013). Anti-obesity effects of galangin, a pancreatic lipase inhibitor in cafeteria diet fed female rats. Pharmaceutical Biology, 51(5), 607613. doi: 10.3109/13880209.2012.757327 CrossRefGoogle ScholarPubMed
López, F. J. and Alvariño, J. M. R. (2000). Effects of added caffeine on results following artificial insemination with fresh and refrigerated rabbit semen. Animal Reproduction Science, 58(1–2), 147154. doi: 10.1016/s0378-4320(99)00084-6 CrossRefGoogle ScholarPubMed
Mayachiew, P. and Devahastin, S. (2008). Antimicrobial and antioxidant activities of Indian gooseberry and galangal extracts. LWT – Food Science and Technology, 41(7), 11531159. doi: 10.1016/j.lwt.2007.07.019 CrossRefGoogle Scholar
Mazaheri, M., Shahdadi, V. and Nazari Boron, A. (2014). Molecular and biochemical effect of alcohlic extract of Alpinia galanga on rat spermatogenesis process. Iranian Journal of Reproductive Medicine, 12(11), 765770.Google ScholarPubMed
Mazani, M., Argani, H., Rashtchizadeh, N., Ghorbanihaghjo, A., Hamdi, A., Estiar, M. A. and Nezami, N. (2013). Effects of zinc supplementation on antioxidant status and lipid peroxidation in hemodialysis patients. Journal of Renal Nutrition, 23(3), 180184. doi: 10.1053/j.jrn.2012.08.012.CrossRefGoogle ScholarPubMed
Miliauskas, G., Venskutonis, P. R. and van Beek, T. A. (2004). Screening of radical scavenging activity of some medicinal and aromatic plant extracts. Food Chemistry, 85(2), 231237. doi: 10.1016/j.foodchem.2003.05.007 CrossRefGoogle Scholar
Nagata, M. and Yamashita, I. (1992). Simple method for simultaneous determination of chlorophyll and carotenoids in tomato fruit. Journal of the Japanese Society for Food Science and Technology, 39(10), 925928. doi: 10.3136/nskkk1962.39.925 CrossRefGoogle Scholar
Nampoothiri, S. V., Esakkidurai, T. and Pitchumani, K. (2015). Identification and quantification of phenolic compounds in Alpinia galanga and Alpinia calcarata and its relation to free radical quenching properties: a comparative study. Journal of Herbs, Spices and Medicinal Plants, 21(2), 140147. doi: 10.1080/10496475.2014.923358 CrossRefGoogle Scholar
Negm, S. H. and Ragheb, E. M. (2019). Effect of (Alpinia officinarum) Hance on sex hormones and certain biochemical parameters of adult male experimental rats. Journal of Food and Dairy Sciences, 10(9), 315322. doi: 10.21608/jfds.2019.55653 CrossRefGoogle Scholar
NRC (1977). National Research Council Nutrient requirements of domestic animals nutrients requirement of rabbits USA. National Academy of Sciences.Google Scholar
Ogbu, O. A. C. and Ezeokoli, N. C. (2016). Supplementary doses of zinc: Effects on male rabbit hormonal levels. In Proceedings of the 21st Annual Conference Animal Science Association of Nigeria, 18 22. Port Harcourt, Nigeria.Google Scholar
Ogbuewu, I. P., Enumaibe, C., Kadurumba, O. E., Iwuji, C. T., Ogundu, U. E., Etuk, I. F., Opara, M. N., Okoli, I. C. and Iloeje, M. U. (2013). Sexual libido, testicular histology and sperm physiology of rabbit bucks fed diets supplemented with toasted soybean seed meal. Journal of Agricultural Technology, 9(1), 2128.Google Scholar
Rabeh, N. M. (2016). Effect of halawa tahinia alone or with ginger and cinnamon on sex hormones in adult male rats. International Journal of Nutrition and Food Sciences, 5(3), 211219. doi: 10.11648/j.ijnfs.20160503.19 CrossRefGoogle Scholar
Rachkeeree, A., Kantadoung, K., Suksathan, R., Puangpradab, R., Page, P. A. and Sommano, S. R. (2018). Nutritional compositions and phytochemical properties of the edible flowers from selected Zingiberaceae Found in Thailand. Frontiers in Nutrition, 5, 3. doi: 10.3389/fnut.2018.00003 CrossRefGoogle ScholarPubMed
Saboo, S., Chavan, R., Tapadiya, G. and Khadabadi, S. (2014). An organized assessment of species of plants of Alpinia genera, belonging to family “Zingiberaceae”. American Journal of Ethnomedicine, 1(2), 102108.Google Scholar
Sarieh, S., Javad, S. R., Farzaneh, M. R., Mohammad, R. S. and Mohammad, R. (2014). Effects of aqueous root extracts of Anacyclus pyrethrum on gonadotropins and testosterone serum in adult male rats. AJPCT, 2(6), 767772.Google Scholar
SAS. (2002). SAS/STAT guide for personal computer, proprietary software version 9. SAS Institute, Inc.Google Scholar
Sharma, N., Kumar, A., Sharma, P. R., Qayum, A., Singh, S. K., Dutt, P., Paul, S., Gupta, V., Verma, M. K., Satti, N. K. and Vishwakarma, R. (2018). A new clerodane furano diterpene glycoside from Tinospora cordifolia triggers autophagy and apoptosis inHCT-116 colon cancer cells. Journal of Ethnopharmacology, 211, 295310. doi: 10.1016/j.jep.2017.09.034 CrossRefGoogle ScholarPubMed
Smith, J. T. and Mayer, D. T. (1955). Evaluation of sperm concentration by the hemacytometer method. Comparison of four counting fluids. Fertility and Sterility, 6(3), 271275. doi: 10.1016/s0015-0282(16)31987-2 CrossRefGoogle ScholarPubMed
Stein, E. A. (1986). Textbook of chemical chemistry, Tiez, N.W. (ed.). WB Saunders, Philadelphia (pp. 879886).Google Scholar
Wilke, T. J. and Utley, D. J. (1987). Total testosterone, free-androgen index, calculated free testosterone, and free testosterone by analogue RIA compared in hirsute women and in otherwise-normal women with altered binding of sex-hormone-binding globulin. Clinical Chemistry, 33(8), 13721375. doi: 10.1093/clinchem/33.8.1372 CrossRefGoogle ScholarPubMed