Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-11T03:02:51.718Z Has data issue: false hasContentIssue false

Impact of Totally Impermeable Film on the Efficacy of 1,3-Dichloropropene and Chloropicrin Mixtures for the Control of Nutsedge

Published online by Cambridge University Press:  23 February 2017

Mary C. Stevens
Affiliation:
Department of Horticultural Sciences, North Florida Research and Education Center, University of Florida, Quincy, FL 32351
Joshua H. Freeman*
Affiliation:
Department of Horticultural Sciences, North Florida Research and Education Center, University of Florida, Quincy, FL 32351
Peter J. Dittmar
Affiliation:
Department of Horticultural Sciences, University of Florida, Gainesville, Florida 32611
*
Corresponding author's E-mail: joshuafr@ufl.edu

Abstract

Methyl bromide (MBr) was a widely used fumigant in plasticulture because of its effectiveness against soil-borne pests and weeds in high-value crops; however, it was found to be a class 1 ozone-depleting substance and is no longer available for use in most of the United States. A mixture of 1,3-dichloropropene and chloropicrin (Pic-Clor 60) is an alternative that has been used to control soil-borne pathogens and nematodes, and has marginal control of weeds. Virtually impermeable film (VIF) and totally impermeable film (TIF) retain fumigants in the soil longer than the low- and high-density polyethylene films typically used in plasticulture production systems. The increased retention by these films may result in greater control of recalcitrant weeds such as nutsedge. Four rates of Pic-Clor 60 (112, 168, 224, and 280 kg ai ha−1) used with TIF, 280 kg ai ha−1 of Pic-Clor 60 used with VIF, and one nontreated control with VIF were evaluated for 2 yr to assess control of yellow and purple nutsedge and to determine an efficacious Pic-Clor 60 rate used with TIF. TIF with a lower rate of 224 kg ai ha−1 of Pic-Clor 60 significantly controlled nutsedge populations compared to a high rate of 280 kg ai ha−1 with VIF.

Methyl bromide (MBr) fue un fumigante ampliamente usado en plasticultura por su efectividad para el control de plagas de suelo y de malezas en cultivos de alto valor, sin embargo, fue clasificado como una sustancia clase 1 degradadora de ozono por lo que ya no está disponible para su uso en la mayoría de los Estados Unidos. Una mezcla de 1,3-dichloropropene y chloropicrin (Pic-Clor 60) es una alternativa que ha sido usada para el control de patógenos de suelo y nematodos y tiene un control de malezas marginal. Las coberturas de filme virtualmente impermeable (VIF) y de filme totalmente impermeable (TIF) retienen a los fumigantes en el suelo por más tiempo que las coberturas de polyethylene de alta densidad típicamente usadas en sistemas de producción con plasticultura. La mayor retención con estas coberturas podría resultar en mayor control de malezas recalcitrantes tales como las especies Cyperus. Se estudiaron cuatro dosis de Pic-Clor 60 (112, 168, 224, y 280 kg ai ha−1) con TIF, 280 kg ai ha−1 de Pic-Clor 60 con VIF, y un testigo sin tratamiento con VIF durante 2 años para evaluar el control de Cyperus esculentus y Cyperus rotundus para identificar una dosis de Pic-Clor 60 eficaz con TIF. TIF con una dosis baja de 224 kg ai ha−1 de Pic-Clor 60 controló significativamente poblaciones de Cyperus al compararse con una dosis alta de 280 kg ai ha−1 con VIF.

Type
Research Article
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate editor for this paper: Robert Nurse, Agriculture and Agri-Food Canada.

References

Literature Cited

Alves, C, MacRae, AW, Hunnicut, CJ, Jacoby, TP, MacDonald, GE, Dittmar, PJ (2013) Impact of fallow programs and fumigants on nutsedge (Cyperus spp.) management in plasticulture tomato. Weed Technol 27: 323330 Google Scholar
Anonymous (2012) Pic-Clor 60 fumigant product label. Hollister, CA: Soil Chemicals Corporation dba Cardinal Professional Products Google Scholar
Bendixen, LE, Nandihalli, UB (1987) Worldwide distribution of purple and yellow nutsedge (Cyperus rotundus and C. esculentus). Weed Technol 1: 6165 Google Scholar
Buker, RS, Stall, WM, Olson, SM, Schilling, DG (2003) Season-long interference of yellow nutsedge (Cyperus esculentus) with direct-seeded and transplanted watermelon (Citrullus lanatus). Weed Technol 17: 751754 Google Scholar
Chase, CA, Stall, WM, Simonne, EH, Hochmuth, RC, Dukes, MD, Weiss, AW (2006) Nutsedge control with drip-applied 1,3-dichloropropene plus chloropicrin in a sandy soil. HortTechnology 16: 641648 Google Scholar
Chellemi, DO, Ajwa, H, Sullivan, D, Alessandro, R, Gilreath, JP, Yates, SR (2011) Soil fate of agricultural fumigants in raisedbed, plasticulture systems in the southeastern United States. J Environ Qual 40: 12041214 Google Scholar
Chow, E (2008) Properties of EVOH and TIF films for the reduction of fumigant dosage and VOC emission. in Annual International Research Conference on MBr Alternatives and Emissions Reductions: Orlando, FL Google Scholar
Devkota, P, Norsworthy, JK, Rainey, R (2013) Efficacy and economics of herbicide programs compared to methyl bromide for weed control in polyethylene-mulched bell pepper. Weed Technol 27: 580589 Google Scholar
[FDACS] Florida Department of Agriculture and Consumer Services (2015) Florida Agriculture Overview and Statistics. http://www.freshfromflorida.com/Divisions-Offices/Marketing-and-Development/Education/For-Researchers/Florida-Agriculture-Overview-and-Statistics. Accessed January 5, 2016Google Scholar
Fennimore, S, Ajwa, H (2011) Totally impermeable film retains fumigants, allowing lower application rates in strawberry. Calif Agric 65: 211215 Google Scholar
Fennimore, S, Ajwa, H, Weber, JB (2009) Pic-Clor 60 retention under totally impermeable film in strawberry. in Annual International Research Conference on MBr Alternatives and Emissions Reductions: San Diego, CA Google Scholar
Ferguson, W, Padula, A (1994) Banning methyl bromide for soil fumigation. Agric Econ Rep 677 Google Scholar
Freeman, JH, McAvoy, T (2011) Reduced rates of dimethyl disulfide in combination with totally impermeable film mulch. Pages 14 in Annual International Research Conference on MBr Alternatives and Emissions Reductions: San Diego, CA Google Scholar
Freeman, JH, Olson, SM (2014) Chapter 6. Mulching. Gainesv Univ Florida Inst Food Agric Sci Google Scholar
Gamliel, A, Grinstein, A, Klein, L, Cohen, Y, Katan, J (1998) Permeability of plastic films to methyl bromide: field study. Crop Prot 17: 241248 Google Scholar
Gao, S, Hanson, BD, Qin, R, Wang, D, Yates, SR (2011) Comparisons of soil surface sealing methods to reduce fumigant emission loss. J Environ Qual 40: 14801487 Google Scholar
Gilreath, JP, Motis, TN, Santos, BM (2005) Cyperus spp. control with reduced methyl bromide plus chloropicrin doses under virtually impermeable films in pepper. Crop Prot 24: 285287 Google Scholar
Hochmuth, GJ, Hochmuth, RC, Olson, SM (1988) Polyethylene mulching for early vegetable production. University of Florida IFAS Circular 805. Pp 16 Google Scholar
Holm, LG, Plunknett, DL, Pancho, J V., Herberger, JP (1991) The World's Worst Weeds: Distribution and Biology. Malabar, FL: Krieger. Pp 125133 Google Scholar
Luo, L, Yates, SR, Ashworth, DJ, Xuan, R, Becker, JO (2013) Effect of films on 1,3-dichloropropene and chloropicrin emission, soil concentration, and root-knot nematode control in a raised bed. J Agric Food Chem 61: 24002406 Google Scholar
McAvoy, T, Freeman, JH (2013a) Retention of the soil fumigant dimethyl disulfide by virtually and totally impermeable film mulches. HortScience 48: 11541158 Google Scholar
McAvoy, T, Freeman, JH (2013b) Yellow nutsedge (Cyperus esculentus) control with methyl iodide in combination with totally impermeable film. Weed Technol 27: 117122 Google Scholar
McAvoy, T, Freeman, JH (2013c) Yellow nutsedge (Cyperus esculentus) control with reduced rates of dimethyl disulfide in combination with totally impermeable film. Weed Technol 27: 515519 Google Scholar
Miller, MR, Dittmar, PJ, Vallad, GE, Ferrell, JA (2014) Nutsedge (Cyperus spp.) control in bell pepper (Capsicum annuum) using fallow-period weed mangement and fumigation for two years. Weed Technol 28: 653659 Google Scholar
Minuto, A, Gilardi, G, Gullino, ML, Garibaldi, A (1999) Reduced dosages of methyl bromide applied under gas-impermeable plastic films for controlling soilborne pathogens of vegetable crops. Crop Prot 18: 365371 Google Scholar
Noling, JW (2013) Reducing fumigant application rates and soil emissions with plastic mulch technology. University of Florida IFAS Extension. Publication ENY046. Pp 15 Google Scholar
Papiernik, SK, Yates, SR (2001) Transport of fumigant compounds through HDPE and virtually impermeable films. Pages 35 in Annual International Research Conference on MBr Alternatives and Emissions Reductions: San Diego, CA Google Scholar
Qin, R, Gao, S, Ajwa, H, Sullivan, D, Wang, D, Hanson, BD (2011) Field evaluation of a new plastic film (vapor safe) to reduce fumigant emissions and improve distribution in soil. J Environ Qual 40: 11951203 Google Scholar
Santos, BM, Gilreath, JP, Motis, TN (2005) Managing nutsedge and stunt nematode in pepper with reduced methyl bromide plus chloropicrin rates under virtually impermeable films. HortTechnology 15: 596599 Google Scholar
Santos, BM, Gilreath, JP, Motis, TN, Hulten, M Von, Siham, MN (2006) Effects of mulch types and concentrations of 1,3-dichloropropene plus chloropcirin on fumigant retention and nutsedge control. HortTechnology 16: 637640 Google Scholar
Santos, BM, Gilreath, JP, Siham, MN (2007) Comparing fumigant retention of polyethylene mulches for nutsedge control in Florida spodosols. HortTechnology 17: 308311 Google Scholar
Snodgrass, C, Ozores-Hampton, M, MacRae, AW, Noling, JW (2013) Fumigation practices and challenges among Florida tomato growers: survey results. in Florida Tomato Institute Google Scholar
[USDA-ERS] U.S. Department of Agriculture–Economic Research Service (2000) Economic implications of the methyl bromide phaseout. Pp 112 Google Scholar
[US EPA] U.S. Environmental Protection Agency (2005) Overview of the use and usage of soil fumigants. 32 pGoogle Scholar
[US EPA] U.S. Environmental Protection Agency (2012) Methyl bromide alternatives. http://www.epa.gov/ozone/mbr/alts.html. Accessed May 12, 2015Google Scholar
[US EPA] U.S. Environmental Protection Agency (2014) The phaseout of methyl bromide. http://www.epa.gov/ozone/mbr/index.html. Accessed November 5, 2014Google Scholar
[US EPA] U.S. Environmental Protection Agency (2015) Tarps. http://www2.epa.gov/soil-fumigants/tarps. Accessed September 15, 2015Google Scholar
Webster, TM (2005) Mulch type affects growth and tuber production of yellow nutsedge (Cyperus esculentus) and purple nutsedge (Cyperus rotundus). Weed Sci 53: 834838 Google Scholar
William, RD, Warren, GF (1975) Competition between purple nutsedge and vegetables. Weed Sci 23: 317323 Google Scholar