Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-11T06:43:49.419Z Has data issue: false hasContentIssue false

Alternatives for Control of Paraquat Tolerant American Black Nightshade (Solanum americana)

Published online by Cambridge University Press:  12 June 2017

Thomas A. Bewick
Affiliation:
Vegetable Crops Dep., Univ. Florida, Gainesville, 32611
William M. Stall
Affiliation:
Vegetable Crops Dep., Univ. Florida, Gainesville, 32611
Stephen R. Kostewicz
Affiliation:
Vegetable Crops Dep., Univ. Florida, Gainesville, 32611
Kenneth Smith
Affiliation:
Vegetable Crops Dep., Univ. Florida, Gainesville, 32611

Abstract

Greenhouse and field experiments were conducted to identify alternative herbicide treatments for the control of a biotype of American black nightshade which has been shown to tolerate paraquat. In greenhouse experiments the combination of paraquat and the metal chelator diethyldithiocarbamate at either 1% w/v or 3% w/v, and diquat alone significantly lowered I50 values, based on dry weight, when compared with paraquat alone. None of these treatments provided acceptable control (>90%) in field experiments. Treatments that controlled American black nightshade under field conditions were: monocarbamide dihydrogensulfate at 9 kg ai ha-1, monocarbamide dihydrogensulfate at 9 kg ha-1 + paraquat at 0.6 kg ha-1, lactofen at 0.6 kg ha-1, oxyfluorfen at 0.6 kg ha-1, and acifluorfen at 0.6 kg ha-1. Addition of tridiphane at 1.7 kg ha-1 to paraquat at 0.6 kg ha-1 did not improve control of American black nightshade under field conditions.

Type
Research
Copyright
Copyright © 1990 by the Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

1. Baker, E. A. 1980. Effect of cuticular components on foliar penetration. Pestic. Sci. 11:367370.Google Scholar
2. Bewick, T. A., Kostewicz, S. R., Stall, W. M., Shilling, D. G., and Smith, K. 1990. Interaction of cupric hydroxide, paraquat, and biotype of American black nightshade (Solanum americanum). Weed Sci. 38: 634638.Google Scholar
3. Bishop, T., Powles, S. B., and Comic, G. 1987. Mechanism of paraquat resistance in Hordeum glaucum. II. Paraquat Uptake and translocation. Australian J. Plant Physiol. 14:539547.Google Scholar
4. Carroll, E. W., Schwarz, O. J., and Hickok, L. G. 1988. Biochemical studies of paraquat-tolerant mutants of the fern Ceratopteris richardii . Plant Physiol. 87:651654.Google Scholar
5. Dionigi, C. P., and Dekker, J. H. 1989. Disruption of soybean vascular tissue by tridiphane. Weed Sci. Soc. Am. Abstr. 29:87.Google Scholar
6. Dionigi, C. P., and Dekker, J. H. 1988. The effects of tridiphane pretreatment on response of soybeans to paraquat-induced oxidative stress. Weed Sci. Soc. Am. Abstr. 28:71.Google Scholar
7. Draper, N. R., and Smith, H. 1981. Applied Regression Analysis. 2nd ed. John Wiley and Sons, New York. p. 4749.Google Scholar
8. Freisen, G. H. 1979. Weed interference in transplanted tomato (Lycopersicon esculentum). Weed Sci. 27:1113.Google Scholar
9. Fuerst, E. P., Nakatani, H. Y., Dodge, A. D., Penner, D., and Arntzen, C. J. 1985. Paraquat resistance in Conyza . Plant Physiol. 77:984989.Google Scholar
10. Gilreath, J. P., and Gilreath, P. R. 1989. Effect of adjuvant on nightshade control with paraquat and diquat. Proc. Fla. State Hortic. Soc. 102:338340.Google Scholar
11. Gilreath, J. P. 1989. Postemergence control of nightshade in vegetable row middles. Proc. South. Weed Sci. Soc. 42:150.Google Scholar
12. Gorski, S. F., and Wertz, M. K. 1987. Tomato (Lycopersicon esculentum) and eastern black nightshade (Solanum ptycanthum) tolerance to acifluorfen. Weed Technol. 1:278281.Google Scholar
13. Masiunas, J. B. 1989. Tomato (Lycopersicon esculentum) tolerance to diphenyl ether herbicides applied postemergence. Weed Technol. 3: 602607.Google Scholar
14. Powles, S. B., and Howat, P. D. 1990. Herbicide resistant weeds in Australia. Weed Technol. 4:178185.Google Scholar
15. Powles, S. B., Tucker, E. S., and Morgan, T. R. 1990. A capeweed (Arctotheca calendula) biotype in Australia resistant to bipyridal herbicides. Weed Sci. 37:6062.Google Scholar
16. Powles, S. B. 1986. Appearance of a biotype of the weed, Hordeum glaucum Steud., resistant to the herbicide paraquat. Weed Res. 26: 167172.Google Scholar
17. Shaaltiel, Y., Glazer, A., Bocion, P. F., and Gressel, J. 1988. Cross tolerance to herbicidal and environmental oxidants of plant biotypes tolerant to paraquat, sulfur dioxide, and ozone. Pestic. Biochem. Physiol. 31:1323.Google Scholar
18. Shaaltiel, Y., and Gressel, J. 1987. Biochemical analysis of paraquat resistance in Conyza leads to pinpointing synergists for oxidant generating herbicides. p. 183186 in Greenhalgh, R., and Roberts, T. R., eds. Pesticide Science and Biotechnology. Blackwell, Oxford.Google Scholar
19. Shaaltiel, Y., and Gressel, J. 1986. Multienzyme oxygen radical detoxifying system correlated with paraquat resistance in Conyza bonariensis . Pestic. Biochem. Physiol. 26:2228.Google Scholar
20. Stall, W. M., Kostewicz, S. R., and Brown, R. L. 1987. Reduction in the control of common nightshade (Solanum americanum) by paraquat due to copper fungicides. Proc. Fla. State Hortic. Soc. 100:222224.Google Scholar
21. Tucker, E. S., and Powles, S. B. 1991. A biotype of hare barley (Hordeum leporinum) resistant to paraquat and diquat. Weed Sci. In press.Google Scholar
22. Vaughn, K. C., Vaughn, M. A., and Camilleri, P. 1989. Lack of crosstolerance of paraquat-resistant hairy fleabane (Conyza bonariensis) to other toxic oxygen generators indicates enzymatic protection is not the resistance mechanism. Weed Sci. 37:511.Google Scholar
23. Weaver, S. E., Smits, N., and Tan, C. S. 1987. Estimating yield loss of tomatoes (Lycopersicon esculentum) caused by nightshade (Solanum spp.) Weed Sci. 35:163168.Google Scholar
24. Zanocco, A. L., Pavez, R., Videla, L. A., and Lissi, E. A. 1989. Antioxidant capacity of diethyldithiocarbamate in a metal independent lipid peroxidative process. Free Radical Biology and Medicine 7: 151156.Google Scholar