Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-15T16:46:11.705Z Has data issue: false hasContentIssue false

Evaluation of Thermal Implements and Organic Herbicides for Weed Control in a Nonbearing Almond (Prunus dulcis) Orchard

Published online by Cambridge University Press:  20 January 2017

Anil Shrestha*
Affiliation:
Department of Plant Science, 2415 E. San Ramon Ave., M/S AS 72, California State University, Fresno, CA 93740
Marcelo Moretti
Affiliation:
Department of Plant Science, 2415 E. San Ramon Ave., M/S AS 72, California State University, Fresno, CA 93740
Nathalia Mourad
Affiliation:
Department of Plant Science, 2415 E. San Ramon Ave., M/S AS 72, California State University, Fresno, CA 93740
*
Corresponding author's E-mail: ashrestha@csufresno.edu

Abstract

Sustainable weed management strategies are needed for organic orchard systems. A study was conducted in an almond orchard in Fresno, CA from 2009 to 2011. Treatment comparisons included steam, flame, and broad applications of either lemongrass oil or D-limonene. An untreated control was also included. The experimental design was a randomized complete block with four replications. Weekly evaluations on percent weed control were taken and weed biomass was sampled 4 to 8 wk after treatment (WAT). Weed control and biomass differed between seasons but, in general, steam and flame provided as much as 95% control 1 WAT. However, the effects lasted only 3 to 4 wk as new weeds emerged or the treated weeds overcame the suppressive effects of the thermal treatments. Weed biomass was 95% lower in the steam- and flame-treated plots compared with the untreated plots in summer. Both steam and flame were more effective on certain erect-growing broad-leaved weed species than on prostrate-growing weeds and grasses. Lemongrass oil provided very little weed control. However, D-limonene provided up to 95% weed control 1 WAT and in one experiment 53% control was observed up to 5 WAT. This herbicide also resulted in lower weed biomass than the untreated and the thermal-treated plots. Monthly applications of steam or flame or applications of D-limonene every 5 to 6 wk may have to be made to adequately suppress weeds in organic almond orchards. Cost estimates of propane use were $41 to 56 ha−1 and $26 ha−1 for the steam and flame treatments, respectively. The cost of D-limonene was estimated as $275 ha−1. To optimize weed control and costs, these tools may need to be used in combination rather than by themselves.

Se necesitan estrategias sustentables de manejo de malezas para los sistemas de huertos orgánicos. Un estudio se condujo en un huerto de almendra en Fresno, California, de 2009 a 2011. Los tratamientos a comparar incluyeron vapor, flama y aplicaciones totales de aceite de zacate limón o de d-limonene. Un testigo sin control de malezas fue también incluido. El diseño experimental fue un bloque completo al azar con cuatro repeticiones. Se hicieron evaluaciones semanales del porcentaje de control de malezas, y se muestreó la biomasa de las mismas de 4 a 8 semanas después del tratamiento (SDT). El control de malezas y la biomasa difirieron entre los ciclos de cultivo, pero en general las aplicaciones de vapor y flama proporcionaron un control de hasta 95% 1 SDT. Sin embargo, los efectos duraron solamente de 3 a 4 semanas conforme emergieron las nuevas malezas o las malezas tratadas superaron los efectos supresivos de los tratamientos con calor. La biomasa de las malezas fue 95% menor en las parcelas tratadas con vapor y flama, en comparación al testigo no tratado en el verano. Ambos tratamientos, vapor y flama, fueron más efectivos en ciertas especies de malezas de hoja ancha y de crecimiento erecto que en las malezas y zacates de crecimiento rastrero. El aceite de zacate limón proporcionó muy poco control. Sin embargo, d-limonene proporcionó hasta 95% de control 1 SDT y en un experimento se observó 53% de control hasta las 5 SDT. Este herbicida también originó menor biomasa de las malezas que el testigo no tratado y las parcelas de tratamiento termal. Aplicaciones mensuales de vapor o flama o aplicaciones de d-limonene cada 5–6 semanas, tal vez tendrían que hacerse para suprimir adecuadamente las malezas en huertos orgánicos de almendra. Los costos estimados del uso de propano fueron de 41 a $56 ha−1 y de $26 ha−1 para los tratamientos de vapor y flama, respectivamente. El costo de d-limonene fue estimado en $275 ha−1. Para optimizar el control de malezas y los costos, estas herramientas tal vez podrían ser utilizadas en combinación y no individualmente.

Type
Weed Management—Techniques
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Ascard, J. 1994. Dose–response models for flame weeding in relation to plant size and density. Weed Res. 34:377385.Google Scholar
Ascard, J. 1995. Effects of flame weeding on weed species at different developmental stages. Weed Res. 35:397411.Google Scholar
Ascard, J. 1998. Comparison of flaming and infrared radiation techniques for thermal weed control. Weed Res. 38:6976.Google Scholar
Bond, W. and Grundy, A. C. 2001. Non-chemical weed management in organic farming systems. Weed Res. 41:383405.Google Scholar
Cisneros, J. J. and Zandstra, B. H. 2008. Flame weeding effects on several weed species. Weed Technol. 22:290295.Google Scholar
Daniell, J. W., Chappell, W. E., and Couch, H. B. 1969. Effect of sublethal and lethal temperatures on plant cells. Plant Physiol. 44:16841689.Google Scholar
Elmore, C. L. 1989. Vegetation management systems in almond orchards. Calif. Agric. 43:1617.Google Scholar
Furness, N. H. and Upadhyaya, M. K. 2002. Differential susceptibility of agricultural weeds to ultraviolet-B radiation. Can. J. Plant Sci. 82:789796.Google Scholar
Hansson, D. and Ascard, J. 2002. Influence of developmental stage and time of assessment on hot water weed control. Weed Res. 42:307316.Google Scholar
Kerpauskas, P., Sirvydas, A. P., Lazauskas, P., Vasinauskiene, R., and Tamosiunas, A. 2006. Possibilities of weed control by water steam. Agron. Res. 4:221225.Google Scholar
Klonsky, K. and Richter, K. 2011. Statistical review of California's organic agriculture 2005–2009. Agricultural Issues Center, University of California. aic.ucdavis.edu/publications/Statistical_Review_05-09.pdf. Accessed: June 15, 2011.Google Scholar
Kolberg, R. L. and Wiles, L. J. 2002. Effect of steam application on cropland weeds. Weed Technol. 16:4349.Google Scholar
Leon, R. G. and Ferreira, D. T. 2008. Interspecific differences in weed susceptibility to steam injury. Weed Technol. 22:719723.Google Scholar
Sartorato, I., Zanin, G., Baldoin, C., and de Zanche, C. 2006. Observations on the potential of microwaves for weed control. Weed Res. 46:19.Google Scholar
Shrestha, A., Clements, D. R., and Upadhyaya, M. K. 2004. Weed management in agroecosystems: towards a holistic approach. Pages 451477 in Recent Research Developments in Crop Science, Volume 1, Part-II. Trivandrum, India Research Signpost.Google Scholar
Sirvydas, A., Lazauskas, P., Stepanas, A., Nadzeikiene, J., and Kerpauskas, P. 2006. Plant temperature variation in the thermal weed control process. J. Plant Dis. Prot. 20:355361.Google Scholar
Sivesind, E. C., LeBlanc, M. L., Cloutier, D. C., Seguin, P., and Stewart, K. A. 2009. Weed response to flame weeding at different developmental stages. Weed Technol. 23:438443.Google Scholar
Ulloa, S. M., Datta, A., and Knezevic, S. Z. 2010. Growth stage-influenced differential response of foxtail and pigweed species to broadcast flaming. Weed Technol. 24:319325.Google Scholar
[UCIPM] University of California Statewide Integrated Pest Management Program. Pest Management Guidelines: Almond. www.ipm.ucdavis.edu/PDF/PMG/pmgalmond.pdf. Accessed: June 15, 2011.Google Scholar
[USDA-NASS] United States Department of Agriculture, National Agricultural Statistics Service. 2010 California Almond Forecast. Online: www.nass.usda.gov/Statistics_by_State/California/Publications/Fruits_and_Nuts/201005almpd.pdf. Accessed: June 15, 2011.Google Scholar
Vincent, C., Panneton, B., and Fleurat-Lessard, F., eds. 2001. Physical control in plant protection. Berlin/Paris Springer/INRA. 329 p.Google Scholar