Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-11T15:01:03.677Z Has data issue: false hasContentIssue false

Influence of Imazethapyr on Rhizobium Growth and its Symbiosis with Pea (Pisum sativum)

Published online by Cambridge University Press:  12 June 2017

A. Gonzalez
Affiliation:
Dep. Ciencias del Medio Natural, Univ. Pública de Navarra
C. Gonzalez-Murua
Affiliation:
Dep. Biología Vegetal y Ecología, Univ. del País Vasco, Apdo 644, E-48080 Bilbao (Spain)
M. Royuela
Affiliation:
Dep. Ciencias del Medio Natural, Univ. Pública de Navarra, Campus Arrosadía, E-31006 Pamplona (Spain)

Abstract

Imazethapyr is a selective herbicide used to control a wide spectrum of weeds in several legume crops, including pea. The effect of imazethapyr on pea-Rhizobium symbiosis was studied through its effect on microorganism growth, microorganism nodulation ability and plant growth. Symbiotic plants were damaged by imazethapyr concentrations higher than 1.73 μM applied preemergence. The number of nodules per plant was affected more than nodule size, suggesting a direct imazethapyr effect on the nodule initiation rather than on nodule development. However, imazethapyr did not directly affect Rhizobium because doses higher than 0.34 mM were required to cause slight effects on Rhizobium growth in a defined medium. Also, nodulation ability of bacteria treated with imazethapyr was not affected. These results suggest that imazethapyr inhibits the growth of the symbiotic plant rather than having a direct effect on the bacteria. Accordingly, symbiotic plants were less affected than the corresponding nitrate-reducing pea plants.

Type
Physiology, Chemistry, and Biochemistry
Copyright
Copyright © 1996 by the Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

1. Aggarwal, T. C., Narula, N., and Gupta, K. G. 1986. Effect of some carbamate pesticides on nodulation, plant yield and nitrogen fixation by Pisum sativum and Vigna sinensis in the presence of their respective rhizobia. Plant Soil 94: 125132.Google Scholar
2. Appelbaum, E. 1990. The Rhizobium/Bradyrhizobium-legume symbiosis. Pages 131158 in Gresshoff, P. M., ed. Molecular Biology of Symbiotic Nitrogen Fixation. CRC Press, Inc., Boca Raton, FL.Google Scholar
3. Burnet, M. and Hodgson, B. 1991. Differential effects of the sulfonylurea herbicides chlorsulfuron and sulfometuron methyl on microorganisms. Arch. Microbiol. 155: 521525.Google Scholar
4. Caetano-Anollés, G., Wall, L. G., De Micheli, A. T., Macchi, E. M., Bauer, W. D., and Favelukes, G. 1988. Role of motility and chemotaxis in efficiency of nodulation by R. meliloti . Plant Physiol. 86: 12281235.Google Scholar
5. Cardina, J., Hartwig, N. L., and Lukezic, F. L. 1986. Herbicidal effects on crownvetch rhizobia and nodule activity. Weed Sci. 34: 338343.Google Scholar
6. Clark, S. A. and Mahanty, H. K. 1991. Influence of herbicides on growth and nodulation of white clover Trifolium repens . Soil. Biol. Biochem. 23: 725730.Google Scholar
7. Curley, R. L. and Burton, J. C. 1975. Compatibility of Rhizobium japonicum with chemical seed protectants. Agron. J. 67: 807808.Google Scholar
8. Eberbach, P. L. and Douglas, L. A. 1989. Herbicide effects on the growth and nodulation potential of Rhizobium trifolii with Trifolium subterraneum L. Plant Soil 119: 1523.Google Scholar
9. Flores, M. and Barbachano, M. 1992. Effects of herbicides gramoxone. diuron and totacol on growth and nodulation of three strains of Rhizobium meliloti . Sci. Total Environ. 123/124: 249260.CrossRefGoogle Scholar
10. Gallori, E., Casalone, E., Colella, C. M., Daly, S., and Polsinelli, M. 1991. 1,8-Naphtalic anhydride antidote enhance the toxic effects of captan and Ihiram fungicides on Azospirillum brasilense cells. Res. Microbiol. 142: 10051012.Google Scholar
11. Gaworzewska, E. T. and Carlile, M. J. 1982. Positive chemotaxis of Rhizobium leguminosarum and other bacteria towards roots exudate from legumes and other plants. J. Gen. Microbiol. 128: 11791188.Google Scholar
12. Gotz, R., Limmer, N., Ober, K. and Schmitt, R. 1982. Motility and chemotaxis in two strains of Rhizobium with complex flagella. J. Gen. Microbiol. 128: 789798.Google Scholar
13. Hart, R., Lignowski, E., and Taylor, F. 1991. Imazelhapyr herbicide. Pages 247256 in Shaner, D. L. and O'Connor, S. L., eds. The Imidazolinone Herbicides. CRC Press, Inc., Boca Raton, FL.Google Scholar
14. Horemans, S., De Coninck, K., Dressen, R., and Vlassak, K. 1987. Symbiotic nitrogen fixation. Pages 133145 in Somerville, L. and Greaves, M. P., eds. Pesticide Effects on Soil Microflora. Taylor & Francis, London.Google Scholar
15. Jaworski, E. G. 1972. Mode of action of N-phosphonomethylglycine: inhibition of aromatic amino acid biosynthesis. J. Agr. Food Chem. 20: 11951198.Google Scholar
16. Kishinevsky, B., Lobel, R., Lifshitz, N., and Gurfel, D. 1988. Effects of some commercial herbicides on rhizobia and their symbiosis with peanuts. Weed Res. 28: 291296.CrossRefGoogle Scholar
17. Knott, C. M. 1985. Herbicides for peas. Pages 267275 in Hebblethwaite, P. D., Heath, M. C. and Dawkins, T.C.K., eds. The Pea Crop. A Basis for Improvement. Butterworths, London.Google Scholar
18. Lal, S. 1988. Effects of pesticides on Rhizobium legume symbiosis. Pages 47128 in Lal, R. and Lal, S., eds. Pesticides and Nitrogen Cycle. Vol. III. CRC Press, Boca Raton, FL.Google Scholar
19. LaRossa, R. A. and Scholss, J. V. 1984. The sulfonylurea herbicide sulfometuron methyl is an extremely potent and selective inhibitor of acetolactate synthase in Salmonella typhymurium . J. Biol. Chem. 259: 87538757.Google Scholar
20. Mallik, M.A.B. and Tesfai, K. 1985. Pesticidal effect on soybean rhizobia symbiosis. Plant Soil 85: 3341.Google Scholar
21. Manhart, J. R. and Wong, P. P. 1979. Nitrate reductase activities of rhizobia and the correlation between nitrate reduction and nitrogen fixation. Can. J. Microbiol. 25: 11691174.Google Scholar
22. Mårtensson, A. M. 1992. Effects of agrochemicals and heavy metals on fast growing rhizobia and their symbiosis with small seeded legumes. Soil Biol. Biochem. 24: 435445.CrossRefGoogle Scholar
23. Mårtensson, A. M. and Nilsson, A. K. 1989. Effects of chlorsulfuron on Rhizobium grown in pure culture and in symbiosis with alfalfa and red clover. Weed Sci. 37: 445450.CrossRefGoogle Scholar
24. Moorman, T. B. 1986. Effects of herbicide on the survival of Rhizobium japonicum strains. Weed Sci. 34: 628633.Google Scholar
25. Quinn, J. P., Peden, J.M.M. and Dick, R. E. 1988. Glyphosate tolerance and utilization by the microflora of soils treated with the herbicide. Appl. Microbiol. Biotechnol. 29: 511516.Google Scholar
26. Rennie, R. J. and Dubetz, S. 1984. Effect of fungicides and herbicides on nodulation and N2 fixation in soybean fields lacking indigenous Rhizobium japonicum . Agron. J. 76: 451454.Google Scholar
27. Rigaud, J. and Puppo, A. 1975. Indole-3-acetic catabolism by soybean bacteroids. J. Gen. Microbiol. 88: 223228.CrossRefGoogle Scholar
28. Sandhu, P. S., Dhingra, K. K., Bhandari, S. C., and Gupta, R. P. 1991. Effect of hand hoeing and application of herbicides on nodulation. nodule activity and grain yield of Lens culinaris Med. Plant Soil 135: 293296.Google Scholar
29. Schnelle, M. A. and Hensley, D. L. 1990. Effects of pesticides upon nitrogen fixation and nodulation by dry bean. Pest. Sci. 28: 8388.Google Scholar
30. Shaner, D. L., Anderson, P. C., and Stidham, M. A. 1984. Imidazolinones. Potent inhibitors of acetohydroxyacid synthase. Plant Physiol. 76: 545546.Google Scholar
31. Sprent, J. I., Stephens, J. H., and Rupela, O. P. 1988. Environmental effects on nitrogen fixation. Pages 801810 in Summerfield, R. J., ed. World Crops: Cool Season Food Legumes. Kluwer Academic Publishers. Dordrecht.Google Scholar
32. Sprout, S. L., Nelson, L. M., and Germida, J. J. 1992. Influence of metribuzin on the Rhizobium leguminosarum lentil (Lens culinaris) symbiosis. Can. J. Microbiol. 38: 343349.Google Scholar
33. Streeter, J. G. Inhibition of legume nodule formation and N2 fixation by nitrate. CRC Crit. Rev. Plant Sci. 7: 123.Google Scholar
34. Vincent, J. M. 1970. A Manual for the Practice Study of Root Nodule Bacteria. Pages 179. Blackwell Scientific Publications. Oxford.Google Scholar