Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-11T20:46:40.675Z Has data issue: false hasContentIssue false

Growth Inhibition in Tobacco (Nicotiana tabacum) Callus by 2,6-Dinitroaniline Herbicides and Protection by D-α-tocopherol Acetate

Published online by Cambridge University Press:  12 June 2017

J. B. Huffman
Affiliation:
Dep. Bot. and Plant Pathol. and Physiol., Clemson Univ., Clemson, SC 29631
N. D. Camper
Affiliation:
Dep. Bot. and Plant Pathol. and Physiol., Clemson Univ., Clemson, SC 29631

Abstract

Tobacco (Nicotiana tabacum L. ‘X-73’) callus tissue cultures were used in a bioassay system for determining the effect of the following substituted 2,6-dinitroaniline herbicides on growth: trifluralin (α,α,α-trifluoro-2,6-dinitro-N,N-dipropyl-p-toluidine); oryzalin (3,5-dinitro-N4,N4-dipropylsulfanilamide); benefin (N-butyl-N-ethyl-α,α,α-trifluoro-2,6-dinitro-p-toluidine); AC 92390 (N-sec-butyl-2,6-dinitro-3,4-xylidine); penoxalin [N-(1-ethylpropyl)-2,6-dinitro-3,4-xylidine]; GS-38946 (N-ethyl-N-tetrahydrofurfuryl-4-trifluoromethyl-2,6-dinitroaniline); chlornidine [N,N-di(2-chloroethyl)-4-methyl-2,6-dinitroaniline]; nitralin [4-(methylsulfonyl)2,6-dinitro-N,N-dipropylaniline]; dinitramine (N4,N4-diethyl-α,α,α-trifluoro-3,5-dinitrotoluene-2,4-diamine); isopropalin (2,6-dinitro-N,N-dipropylcumidine), and profluralin [N(cyclopropylmethyl)-α,α,α-trifluoro-2,6-dinitro-N-propyl-p-toluidine]. The molar concentration required to inhibit fresh weight gain by 50% (I50) was determined by using linear regression analysis on data from a range of five concentrations of each chemical. I50 values did not correlate with structural variations or available physical constants. Herbicides listed in order of increasing activity are AC 92390< GD-38946<profluralin = isopropalin<benefin = chlornidine = trifluralin = nitralin<oryzalin = penoxalin < dinitramine. Exogenously applied D-α-tocopherol acetate at 100 times the I50 concentrations decreased the inhibition of tissue growth by the herbicides.

Type
Research Article
Copyright
Copyright © 1978 by the Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

1. Bartels, P.G. and Hilton, J. L. 1973. Comparison of trifluralin, oryzalin, pronamide, propham, and colchicine treatments on microtubules. Pestic. Biochem. Physiol. 3:462472.Google Scholar
2. Bayer, D. E., Foy, C. L., Mallroy, T. E., and Cutter, E. G. 1967. Morphological and histological effects of trifluralin on root development. Am. J. Bot. 54:945952.Google Scholar
3. Chatterjee, S. and Leopold, A.C. 1963. Auxin structure and abscission activity. Plant Physiol. 38:268272.CrossRefGoogle ScholarPubMed
4. Cocordano, M. J. and Julg, A. 1966. Relations between the electronic structure and auxinic activity of chlorinated benzoic acids. J. Theor. Biol. 12:291296.Google Scholar
5. Gentner, W.A. and Burk, L. G. 1968. Gross morphological and cytological effects of nitralin on corn roots. Weed Sci. 16:259260.Google Scholar
6. Hacskaylo, J. and Amato, V. A. 1968. Effect of trifluralin on roots of corn and cotton. Weed Sci. 16:513515.CrossRefGoogle Scholar
7. Hansch, C. and Lien, E. J. 1968. An analysis of the structure-activity relationship in the adrenergic blocking activity of the β-haloalkylamines. Biochem. Pharmaco. 17:709720.CrossRefGoogle ScholarPubMed
8. Helling, C. S. 1976. Dinitroaniline herbicides in soils. J. Environ. Qual. 5:115.Google Scholar
9. Hess, D. and Bayer, D. 1974. The effect of trifluralin on the ultrastructure of dividing cells of the root meristems of cotton (Gossypium hirsutum L. ‘Acala 4–42’). J. Cell Sci. 15:429441.Google Scholar
10. Hilton, J. L. and Christiansen, M. N. 1972. Lipid contribution to selective action of trifluralin. Weed Sci. 20:290294.Google Scholar
11. Huffman, Jannie and Camper, N. D. 1975. Response of tobacco callus to dinitroaniline herbicides. Proc. South. Weed Sci. Soc. 28:298.Google Scholar
12. Jackson, W. T. and Stetter, D. A. 1973. Regulation of mitosis. IV. An in vitro and ultrastructural study of effects of trifluralin. Can. J. Bot. 51:15131518.CrossRefGoogle Scholar
13. Koopman, H., van Daalen, J. J., and Daams, J. 1967. Relation between structure and herbicidal activity of substituted benzothiadiazoles (2, 1, 3). Weed Res. 7:200207.CrossRefGoogle Scholar
14. Linsmaier, E. and Skoog, F. 1965. Organic growth factor requirements of tobacco tissue cultures. Physiol. Plant. 18:100127.Google Scholar
15. McWhorter, C. G. 1963. Effect of structures of s-triazines on toxicity to soybeans and weeds. Weeds 11:279283.Google Scholar
16. Murashige, T. and Skoog, F. 1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15:473497.CrossRefGoogle Scholar
17. Parka, S. J. and Soper, O. F. 1977. The physiology and mode of action of the dinitroaniline herbicides. Weed Sci. 25:7987.Google Scholar
18. Ries, S. K. 1976. Subtoxic effects on plants. Pages 313344 in Audus, L. J., ed. Herbicides: Physiology, Biochemistry, Ecology. Academic Press, New York. 564 pp.Google Scholar
19. Schmitz, Ruth Y., Skoog, F., Hecht, S. M., and Leonard, N. J. 1972. Comparison of zeatin indoleacetate with zeatin and indoleacetic acid in the tobacco bioassay. Plant Physiol. 50:114116.Google Scholar
20. Schultz, D. P., Funderburk, H. H. Jr., and Negi, N. S. 1968. Effect of trifluralin on growth, morphology and nucleic acid synthesis. Plant Physiol. 43:265273.Google Scholar
21. Strang, R. H. and Rogers, R. L. 1970. A microradio-autographic study of 14C-trifluralin absorption. Weed Sci. 19:363369.Google Scholar
22. Szabo, G. 1974. Dual mechanism for the action of cholesterol on membrane permeability. Nature 252:4749.Google Scholar
23. Weber, J. B. and Monaco, T. J. 1972. Review of the chemical and physical properties of the substituted dinitroaniline herbicides. Proc. South. Weed Sci. Soc. 25:3137.Google Scholar