Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-11T03:00:36.820Z Has data issue: false hasContentIssue false

Deep Sea Ostracodes and Climate Change

Published online by Cambridge University Press:  21 July 2017

Thomas M. Cronin
Affiliation:
926A National Center, U. S. Geological Survey Reston, Virginia 20192 USA
Gary S. Dwyer
Affiliation:
Division of Earth and Ocean Sciences, Duke University, Durham, North Carolina 27708 USA
Get access

Abstract

Ostracodes are bivalved Crustacea whose fossil shells constitute the most abundant and diverse metazoan group preserved in sediment cores from deep and intermediate ocean water depths. The ecology, zoogeography, and shell chemistry of many ostracode taxa makes them useful for paleoceanographic research on topics ranging from deep ocean circulation, bottom-water temperature, ecological response to global climate change and many others. However, the application of ostracodes to the study of climate change has been hampered by a number of factors, including the misconception that they are rare or absent in deep-sea sediments and the lack of taxonomic and zoogeographic data. In recent years studies from the Atlantic, Pacific, and Arctic Oceans show that ostracodes are abundant enough for quantitative assemblage analysis and that the geochemistry of their shells can be a valuable tool for paleotemperature reconstruction. This paper presents practical guidelines for using ostracodes in investigations of climate-driven ocean variability and the ecological and evolutionary impacts of these changes.

Type
Research Article
Copyright
Copyright © 2003 by The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abate, S., Barra, D., Aiello, G., and Bonaduce, G. 1993. The genus Krithe Brady, Crosskey and Robertson, 1874 (Crustacea: Ostracoda) in the Pliocene – Early Pleistocene of the M. San Nicola Section (Gela, Sicily). 1993. Bollettino della Società Paleontologica Italiana, 32:349366.Google Scholar
Ayress, M. A., Whatley, R. C., Downing, S. E. and Millson, K. J. 1995. Cainozoic and recent deep-sea cytherurid Ostracoda from southwestern Pacific and eastern Indian Oceans: part 1, Cytherurinae. Recent. Australian Museum, 47:203233.CrossRefGoogle Scholar
Ayress, M., Neil, H., Passlow, V., and Swanson, K. 1997. Benthonic ostracods and deep watermasses: A qualitative comparison of southwest Pacific, Southern and Atlantic Oceans. Palaeogeography, Palaeoclimatology, Palaeoecology, 131:287302.CrossRefGoogle Scholar
Buzas, M. A. 1990. Another look at confidence limits for species proportions. Journal of Paleontology, 64:842843.CrossRefGoogle Scholar
Benson, R. H. 1971. A new Cenozoic deep-sea geuns, Abyssocythere (Crustacea: Ostracoda: trachyleberididae), with descriptions o ffive new species. Smithsonian Contributions to Paleobiology no. 7, 25 pp.Google Scholar
Benson, R. H. 1972. The Bradleya problem, with descriptions of two new psychrospheric ostracode genera, Agrenocythere and Poseidonamicus (Ostracoda: Crustacea). Smithsonian Contributions to paleobiology no. 12, 138 pp.Google Scholar
Benson, R. H. 1990. Ostracoda and the discovery of global Cenozoic paleoceanographic events. p. 4158 In, Whatley, R. C. and Maybury, C. (eds.), Ostracoda and Global Events. (Chapman and Hall).CrossRefGoogle Scholar
Benson, R. H. and Sylvester-Bradley, P. C. 1971. Deep-sea ostracodes and the transformation of ocean to sea in the Tethys. P. 6391. In, Oertli, H. J. (ed.), Palaeoecologie des Ostracodes. Centre de Recherches Pau-SNPA Bulletin, 5 (suppl.).Google Scholar
Benson, R. H., Chapman, R. E., and Deck, L. T. 1984. Paleoceanographic events and deep-sea ostracodes. Science, 224:13341336.CrossRefGoogle ScholarPubMed
Benson, R. H., Chapman, R. E., and Deck, L. T. 1985. Evidence from the Ostracoda of major events in the South Atlantic and worldwide over the past 80 million years, p. 325350 In Hsu, K. J., and Weissert, H. J. (eds.), South Atlantic Paleoceanography. Cambridge University.Google Scholar
Billups, K., and Schrag, D.P., 2002, Paleotemperatures and ice volume of the past 27 Myr revisited with paired Mg/Ca and O-18/O-16 measurements on benthic foraminifera, Paleoceanography, v. 17, article no. 1003.CrossRefGoogle Scholar
Bonaduce, G., Ciampo, G., and Masoli, M. 1975. Distribution of Ostracoda in the Adriatic Sea. Pubbl. Staz. Zool. Napoli 40 Suppl. P. 1304.Google Scholar
Boyle, E.A., 1981, Cadmium, zinc, copper, and barium in foraminifera tests, Earth and Planetary Science Letters, v. 53, p. 1135 CrossRefGoogle Scholar
Boyle, E.A. and Keigwin, L.D., 1985/86, Comparison of Atlantic and Pacific paleochemical records for the last 215,000 years: changes in deep ocean circulation and chemical inventories, Earth and Planetary Science Letters, v. 76, 135150.CrossRefGoogle Scholar
Brady, G. S. 1880. Report on the Ostracoda dredged by the H. M. S. Challenger during the years 1873-1876. Report of the Scientific Results of the Voyage of H. M. S. Challenger. Zoology, 1, 1184.Google Scholar
Buzas, M. A. 1990. Another look at confidence limits for species proportions. Journal of Paleontology 64:842843.CrossRefGoogle Scholar
Cadot, H.M., and Kaesler, R.L., 1977, Magnesium content of calcite in carapaces of benthic marine Ostracoda, Univ. Kansas Paleontological Contributions, Paper 87.Google Scholar
Colalongo, M. L. and Pasini, G. 1980. Plio-Pleistocene Ostracoda of the Vrica section in Calabria (with remarks on the Neogene/Quaternary Boundary). Bolletin Societie Paleont. Ital. 19(1):44126.Google Scholar
Coles, G. P., Whatley, R. C., and Moguilevsky, A. 1994. The ostracode genus Krithe from the Tertiary and Quaternary of the North Atlantic. Palaeontology, 37(1):71120.Google Scholar
Correge, T. 1993a. The relationship between water masses and benthic ostracod assemblages in the western Coral Sea, Southwest Pacific. Palaeogeography, Palaeoclimatology, Palaeoecology, 105:245266.CrossRefGoogle Scholar
Corrège, T., 1993b, Preliminary results of paleotemperature reconstruction using the magnesium to calcium ratio of deep-sea ostracode shells from the late Quaternary of Site 822, Leg 133, (western Coral Sea), Proceedings of the Ocean Drilling Program, Scientific Results, v. 133, p. 175180 Google Scholar
Cronin, T. M. 1983. Bathyal ostracodes from the Florida-Hatteras slope, the Straits of Florida, and the Blake Plateau. Marine Micropaleontology, 8:89119.CrossRefGoogle Scholar
Cronin, T.M., 1988, Evolution of marine climates of the U.S. Atlantic Coast during the last four million years: Philosophical Trans. of the Royal Society (London) Series B, 318 (1191):661678.Google Scholar
Cronin, T. M., Holtz, T. R. Jr., and Whatley, R. C. 1994. Quaternary paleoceanography of the deep Arctic Ocean based on quantitative analysis of Ostracoda. Marine Geology, 119:305332.CrossRefGoogle Scholar
Cronin, T. M., Holtz, T. R. Jr., Stein, R., Spielhagen, R., Fütterer, D., and Wollenburg, J. 1995. Late Quaternary paleoceanography of the Eurasian Basin, Arctic Ocean. Paleoceanograpghy, 10:259281.CrossRefGoogle Scholar
Cronin, T. M., Raymo, M. E., and Kyle, K. P. 1996. Pliocene (3.2-2.4 Ma) ostracode faunal cycles and deep ocean circulation, North Atlantic Ocean. Geology, 24:695698.2.3.CO;2>CrossRefGoogle Scholar
Cronin, T. M., and Raymo, M. E. 1997 Orbital forcing of deep-sea benthic species diversity. Nature, 385:624627.CrossRefGoogle Scholar
Cronin, T. M., DeMartino, D. M., Dwyer, G. S., and Rodriguez-Lazaro, J. 1999. Deep-sea ostracode species diversity: Response to Late Quaternary climate change. Marine Micropaleontology, 37: 231249.CrossRefGoogle Scholar
Cronin, T. M., Dwyer, G. S., Baker, P. A., Rodriguez-Lazaro, J., Martino, D. M. 2000. Orbital and suborbital variability in North Atlantic bottom water temperature obtained from deep-sea ostracod Mg/Ca ratios. Palaeogeography, Palaeoclimatology, Palaeoecology, 162:4557.CrossRefGoogle Scholar
Cronin, , Boomer, T. I., Dwyer, G. S., and Rodriguez-Lazaro, J. 2002. Ostracoda and paleoceanography, p. 99120 In Holmes, J. A., and Chivas, A. R. (eds.), The Ostracoda; Applications in Quaternary Research. American Geophysical union Monograph 131.Google Scholar
Cronin, T. M., Dwyer, G. S., Kamiya, T., Schwede, S., Willard, D. A. 2003. Medieval Warm Period, Little Ice Age and 20th Century Temperature Variability from Chesapeake Bay. Global and Planetary Change, 36 (1–2):1729.CrossRefGoogle Scholar
Danielopol, D. L., Ito, E., Wansard, G., Kamiya, T., Cronin, T. M., and Baltanas, A. 2002. Techniques for collection and study of Ostracoda, p. 6598 In Holmes, J. A., and Chivas, A. R. (eds.), The Ostracoda: Applications in Quaternary Research. American Geophysical Union Monograph 131.Google Scholar
Dedeckker, P. 2002. Ostracode paleoecology. P. 121135. In Holmes, J. A., and Chivas, A. R. (eds.), The Ostracoda: Applications in Quaternary Research. American Geophysical Union Monograph 131.Google Scholar
Dedeckker, P., Chivas, A. R., Shelley, J. M. G., and Torgersen, T. 1999. Uptake of Mg and Sr in euryhaline ostracod Cyprideis determined from in vitro experiments. Palaeogeography, Palaeoclimatology, Palaeoecology, 66: 231241.Google Scholar
De Villiers, S., Greaves, M., and Elderfield, H., An intensity ratio calibration method for the accurate determination of Mg/Ca and Sr/Ca of marine carbonates by ICP-AES, Geochemistry, Geophysics, Geosystems, (American Geophysical Union online journal).Google Scholar
Didié, C., and Bauch, H. A. 2000. Species composition and glacial-interglacial variations in the ostracode fauna of the northeast Atlantic during the past 200,000 years. Marine Micropaleontology, 40:105129.CrossRefGoogle Scholar
Didié, C. and Bauch, H. 2002. Implications of upper Quaternary stable isotope records of marine ostracodes and benthic foraminifers for paleoecological and paleoceanographical investigations. p. 279299 In Holmes, J. A., and Chivas, A. R. (eds.), The Ostracoda: Applications in Quaternary Research. American Geophysical Union Monograph 131.Google Scholar
Didié, C., Bauch, H. A., Helmke, J. P. 2002. Late Quaternary deep-sea ostracods in the polar and subpolar North Atlantic: paleoecological and paleoenvironmental implication. Palaeogeography, Palaeoclimatology, Palaeoecology, 184: 195212.CrossRefGoogle Scholar
Dingle, R. V., and Lord, A. R. 1990. Benthic ostracods and deep watermasses in the Atlantic Ocean. Palaeogeography, Palaeoclimatology, Palaeoecology, 80:213235.CrossRefGoogle Scholar
Dingle, R.V. 1992. Quaternary ostracods from the continental margin off southwestern Africa part I. Dominant taxa. Annals of the South African Museum, 102:89 p.Google Scholar
Durazzi, J. T. 1977. Stable isotopes in the ostracod shell; a preliminary study. Geochimica Cosmochimica Acta 41;11681170.CrossRefGoogle Scholar
Dwyer, G.S., Cronin, T.M., Baker, P.A., Raymo, M.E., Buzas, J.S., and Corrège, T., 1995, North Atlantic deepwater temperature change during late Pliocene and late Quaternary climatic cycles, Science, 270:13471351.CrossRefGoogle Scholar
Dwyer, G.S., Cronin, T. M., Baker, P. A., and Rodriguez-Lazaro, J. 2000. Changes in North Atlantic deep-sea temperature during climatic fluctuations of the last 25,000 years based on ostracode Mg/Ca ratios. Geochemistry, Geophysics, Geosystems, (AGU electronic journal: http://g-cubed.org/]), 17 p.CrossRefGoogle Scholar
Dwyer, G.S., Cronin, T.M., and Baker, P.A., 2002, Trace elements in Quaternary marine ostracodes, p. 205225 In, Holmes, J.A., and Chivas, A., (eds.), American Geophysical Union Monograph 131.CrossRefGoogle Scholar
Gaffey, S.J., and Bronnimann, C.E., 1993, Effects of bleaching on organic and mineral phases of biogenic carbonates, Journal of Sedimentary Petrology, 63:752754.CrossRefGoogle Scholar
Hastings, D.W., Russell, A.D., and Emerson, S.R. 1998, Foraminiferal magnesium in Globeriginoides sacculifer as a paleotemperature proxy, Paleoceanography, 13:161169.CrossRefGoogle Scholar
Hazel, J. E. 1971. Paleoclimatology of the Yorktown Formation (Upper Miocene nd Lower Pliocene) of Virginia and North Carolina. In, Oertli, H. J. (ed.), Palaeoecologie des Ostracodes. Centre de Recherches Pau-SNPA Bulletin, 5 (suppl.):361375.Google Scholar
Holmes, J. A., and Chivas, A. R. 2002. The Ostracoda: Applications in Quaternary Research. American Geophysical Union Monograph 131, Washington, 313 p.CrossRefGoogle Scholar
Jellinek, T. and Swanson, K.M. (in press). Report on the taxonomy, biogeography and phylogeny of mostly living benthic Ostracoda (Crustacea) from the deep-sea samples (Intermediate water depths) from the Challenger Plateau (Tasman Sea) and Campbell Plateau (Southern Ocean), New Zealand. - Abhandlungen Forschungsinstitut Senckenberg, Frankfurt am Main.Google Scholar
Jones, R. L., Whatley, R. C., Cronin, T. M., and Dowsett, H. J. 1999. Reconstructing late Quaternary deepwater masses in the eastern Arctic Ocean using benthonic ostracodes. Marine Micropaleontology, 37 (3–4): 251272.CrossRefGoogle Scholar
Karlsen, A. W., Cronin, T. M., Ishman, S. E., Willard, D. A., Holmes, C. W., Marot, M., and Kerhin, R. 2000. Historical trends in Chesapeake Bay dissolved oxygen based on benthic foraminifera from sediment cores. Estuaries, 23:488508.CrossRefGoogle Scholar
Majoran, S. and Agrenius, S. 1995. Preliminary observations on living Krithe praetexta praetexta (Sars 1866), Sarsicytheridea bradii (Norman 1865) and other marine ostracods in aquaria. Journal of Micropaleontology 14: 96100.CrossRefGoogle Scholar
Mazzini, I. in press. Taxonomy, biogeography and ecology of Quaternary benthic Ostracoda (Crustacea) from circumpolar deep water of the Emerald Basin (Southern Ocean) and the Tasman Rise (Tasman Sea).-Senckenbergiana Maritima. Frankfurt am Main.CrossRefGoogle Scholar
Martin, P.A., and Lea, D.W., (in press) A simple evaluation of cleaning procedures on fossil benthic foraminiferal Mg/Ca. Geochemistry, Geophysics, Geosystems Technical Brief (American Geophysical Union online journal).Google Scholar
Passlow, V. 1997. Quaternary ostracods as palaeoceanographic indicators: a case study off southern Australia. Palaeogeography, Palaeoclimatology, Palaeoecology. 131: 315325.CrossRefGoogle Scholar
Peypouquet, J.-P. 1975. Les variations des caracteres morphologiques internes chez les ostracodes des genres Krithe et Parakrithe; relation possible avec le teneur en O2 dissous dans l'eau. Bullentin de l'Institut de Geologie du Bassin de Aquitaine, 17:8188.Google Scholar
Pingatore, N.E. Jr., Fretzdorff, S.B., Seitz, B.P., Estrada, L.Y., Borrego, P.M., Crawford, G.M., and Love, K.M., 1993, Dissolution kinetics of CaCO3 in common laboratory solvents, Journal of Sedimentary Petrology, v. 63, p. 641645 Google Scholar
Polyak, , Curry, L. W. B., Darby, D. A., Bischof, J., Cronin, T. M. in press, Sedimentary record from the Mendeleev Ridge: inferences for the Quaternary paleoceanography of the Arctic Ocean. Palaeogeography, Palaeoclimatology, Palaeoecology.Google Scholar
Puri, H. S., Bonaduce, G., and Gervasio, A. M. 1969. Distribution of Ostracoda in the Mediterranean. p. 358411 In, Neale, J. W. (ed.), The Taxonomy, Morphology, and Ecology of Recent Ostracoda. Oliver Boyd, Edinburgh.Google Scholar
Rodriguez-Lazaro, J., and Cronin, T. M. 1999. Quaternary glacial and deglacial Ostracoda in the thermocline of the Little Bahama Bank (NW Atlantic): palaeoceanographic implications. Palaeogeography, Palaeoclimatology, Palaeoecology, 152:339364.CrossRefGoogle Scholar
Schrag, D.P., 1999, Rapid analysis of high-precision Sr/Ca ratios in corals and other marine carbonates, Paleoceanography, v. 14, p. 97102 CrossRefGoogle Scholar
Swanson, K. 1993. Late Quaternary and recent benthic Ostracoda from the Eastern Tasman Sea. ., ANU, Canberra, 160 p. (unpublished).Google Scholar
Swanson, K. M. and Ayress, M. A. 1999. Cytheropteron testudo and related species from the SW Pacific with analyses of their soft part anatomies, relationships and distribution. Senckenbergiana biologica 79 (2): 151193.Google Scholar
Swanson, K. M., and van der Lingen, G. J. 1994. Podocopid ostracod dissolution – description of a new paleoenvironmental tool, with examples from the eastern Tasman Sea, p. 245260 In Van Der Lingen, G. J., Swanson, K. M., and Muir, R. J. (eds), Evolution of the Tasman Sea: Proceedings of the Tasman Sea Conference. A.A. Balkema, Rotterdam and Brookfield.Google Scholar
Van Harten, D. 1996. The case against Krithe as a tool to estimate the depth and oxygenation of ancient oceans. p. 297304 In Moguilevsky, A. and Whatley, R. C. (eds.), Microfossils and Oceanic Environments. University of Wales Press, Aberystwyth).Google Scholar
Whatley, R. C. 1983. Some aspects of the paleobiology of Tertiary deep-sea Ostracoda from the S.W. Pacific. Journal of Micropalaeontology, 2:83104.CrossRefGoogle Scholar
Whatley, R. C. 1985. Evolution of the ostacods Bradleya and Poseidonamicus in the deep-sea cainozoic of the southwest Pacific. Palaeontology, 33:103116.Google Scholar
Whatley, R. C. 1996. The bonds unloosed: The contribution of Ostracoda to our understanding of deep-sea events and processes. p. 125 In, Moguilevsky, A. and Whatley, R. C. (eds.), Microfossils and Oceanic Environments. (University of Wales, Aberystwyth).Google Scholar
Whatley, R. C., Downing, S. E., Kesler, K., and Harlow, C. J. 1984. New species of the ostracod genus Bradleya from the Tertiary and Quaternary of D.S. D.P. sites in the southwest Pacific. Revista Española De Micropaleontología. 16: 265298.Google Scholar
Whatley, R. C., Ayress, M., Downing, S., Harlow, C., and Kesler, K. 1985. Aratrocypris, an enigmatic new cyprid ostracod from the Tertiary of D.S.D.P. sites in the S.W. Pacific. Journal of Micropalaeontology, 4:6979.CrossRefGoogle Scholar
Whatley, R. C., Kesler, K., and Harlow, C. J. 1986. The ostracod genus Poseidonamicus from the Cainozoic of D.S.D.P. sites in the S.W. Pacific. Revista Española De Micropaleontología. 18:387400.Google Scholar
Whatley, R. C., and Ayress, M. 1988. Pandemic and endemic distribution patterns in Quaternary deep-sea ostracods, p. 739755 In Hanai, T., Ikeya, N. and Ishizaki, K. (eds.), Evolutionary Biology of Ostracoda: Its Fundamentals and Applications. Kodansha Ltd. Google Scholar
Whatley, R. C. and Coles, G. 1987. The late Miocene to Quaternary Ostracoda of Leg 94, Deep Sea Drilling Project. Revista Espanola de Micropaleontologia, 19 (1):3397.Google Scholar
Whatley, R. C., and Coles, G. P. 1991. Global Change and the Biostratigraphy of North Atlantic Cainozoic deep water Ostracoda. Journal of Micropalaeontology, 9:119132.CrossRefGoogle Scholar
Whatley, R. C. and Quanhong, Zhao. 1993. The Krithe problem: A case history of the distribution of Krithe and Parakrithe (Crustacea, Ostracoda) in the South China Sea. Palaeogeography, Palaeoclimatology, Palaeoecology, 103:281297.CrossRefGoogle Scholar
Whatley, R.C. and Boomer, I. 1995a. Autochthonous and allochthonous Quaternary Ostracoda from site 893, Santa Barbara basin. Proceedings of the Ocean Drilling Program, Scientific Results, 146:251255.Google Scholar
Whatley, R. C., and Boomer, I. 1995b. Upper Oligocene to Pleistocene Ostracoda from Guyots in the western Pacific: Holes 871A, 872C, and 873B. Proceedings of the Ocean Drilling Program, Scientific Results, 144:8796.Google Scholar
Zhou, B. and Ikeya, N. 1992. Three species of Krithe (Crustacea: Ostracoda) from Suruga Bay, central Japan. Trans. Proc. Palaeont. Soc. Japan, N. S. no. 166: 10971115.Google Scholar