Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-11T01:57:37.894Z Has data issue: false hasContentIssue false

The Investigation of Homovanillic Acid in the Human Brain and its Correlation to Senile Dementia

Published online by Cambridge University Press:  29 January 2018

C. G. Gottfries
Affiliation:
östra Sjukhuset, The Mental Hospital of Malmô, Sweden
I. Gottfries
Affiliation:
Department of Psychiatry II, University of Lund, Sweden
B. E. Roos
Affiliation:
The Pharmacological Institute, University of Gothenburg, Sweden

Extract

In a previous investigation, the concentration of homovanillic acid (HVA) seemed to be related to the degree of dementia (Gottfries et al., 1965). The object of the present work is the further study of the occurrence of HVA in the human brain, especially with regard to senile dementia. The hypothesis is that senile dementia is a disease with a disturbance in the monoamine metabolism, which is reflected in a reduction of HVA in the neostriatum.

Type
Biochemical Studies
Copyright
Copyright © Royal College of Psychiatrists, 1969 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andén, N. E., Carlsson, A., Dahlström, A., Fuxe, K., Hillarp, N. Å., and Larsson, K. (1964). “Demonstration and mapping out of nigro-neostriatal dopamine neurons.” Life. Sci., 3, 523530.Google Scholar
Andén, N. E., Dahlstrôm, A., Fuxe, K., and Larsson, K. (1965). “Further evidence for the presence of nigro-neostriatal dopamine neurons in the rat.” Amer. J. Anat., 116, 329333.Google Scholar
Andén, N. E., Roos, B. E., and Werdinius, B. (1963). “On the occurrence of homovanillic acid in brain and cerebrospinal fluid and its determination by a fluorometric method.” Life Sri., 7, 448458.Google Scholar
Barbeau, A., Marphy, G., and Sourkes, T. L. (1961). “Excretion of dopamine in diseases of basal ganglia.” Science, 133, 17071708.Google Scholar
Bernheimer, H. (1964). “Distribution of homovanillic acid in the human brain.” Nature, 204, 587588.Google Scholar
Bernheimer, H., Birkmayer, W., and Hornykiewicz, O. (1961). “Verteilung des 5-Hydroxytryptamin (Serotonin) im Gehirn des Menschen und sein Verhalten bei Patienten mit Parkinson-Syndrom.” Klin. Wschr., 39, 1056.Google Scholar
Bertler, Å. (1961). “Occurrence and localization of catecholamines in the human brain.” Acta physiol. Scand., 51, 97107.Google Scholar
Bertler, Å., Falck, B., Gottfries, C. G., Ljunggren, L., and Rosengren, E. (1964). “Some observation of adrenergic connections between mesencephalon and cerebral hemispheres.” Acta Pharmacol. et toxical., 21, 283289.CrossRefGoogle Scholar
Rosengren, E. and Rosengren, E. (1959). “Occurrence and distribution of catecholamines in brain.” Acta physiol. Scand., 47, 350361.Google Scholar
Birkmayer, W., and Hornykiewicz, O. (1961). “Der L-3-4-Dioxyphenylalanin (=DOPA)-Effect bei der Parkinson-Akinese.” Wiener klin. Wschr., 45, 787788.Google Scholar
Blessed, G., and Tomlinson, B. E. (1965). “Senile plaques and intellectual deterioration in old age.” In Psychiatric Disorders in the Aged. Report on the Symposium held by the World Psychiatric Association in London, 1965, 310321. Manchester: Geigy.Google Scholar
Carlsson, A., and Lindquist, M. (1967). “Metatyrosine as a tool for selective protection of catecholamine stores against reserpine.” European J. of Pharmacol., 2, 187192.Google Scholar
Corsellis, J. A. N. (1962). “Mental illness and the ageing brain.” Maudsley Monographs, 9.Google Scholar
Ehringer, H., and Hornykiewicz, O. (1960). “Verteilung von Noradrenalin und Dopamin (3-Hydroxytyramin) im Gehirn des Menschen und ihr Verhalten bei Erkrankungen des extrapyramidalen Systems.” Klin. Wschr., 15, 12361239.Google Scholar
Essen-Möller, E. (1946). “A family with Alzheimer's disease.” Acta psych. et neurol., 21, 233244.Google Scholar
Everett, G. M., and Wiegand, R. G. (1962). “Central amines and behavioral states: a critique and new data.” Proceedings of the First International Pharmacological Meeting, 8, 8592.Google Scholar
Fuxe, K. (1965a). “The monoamine nerve terminal.” Z. Zellforsch., 65, 573596.Google Scholar
Fuxe, K. (1965b). “The distribution of monoamine nerve terminals in the central nervous system.” Acta physiol. Scand., 64, Suppl. 247.Google Scholar
Fuxe, K. (1967). Personal communication Google Scholar
Fuxe, K. and Hökeelt, T. (1966). “Further evidence for the existence of tuberoinfundibular dopamine neurons.” Acta physiol. Scand., 66, 245246.Google Scholar
Garrett, H. E. (1958). Statistics in Psychology and Education. London: Longmans.Google Scholar
Gottfries, C. G., Rosengren, A. M., and Rosengren, R. (1965). “The occurrence of homovanillic acid in human brain.” Acta Pharmacol. et toxicol., 23, 3640.Google Scholar
Hornykiewicz, O. (1962). “Dopamine (3-Hydroxytyramin) im Zentral Nervensystem und seine Beziehung zum Parkinson-Syndrom des Menschen.” Dtsch. med. Wschr., 87, 18071810.Google Scholar
Hornykiewicz, O. (1964). “Zur Existenz ‘dopaminerger’ Neurone im Gehirn.” Arch. exp. Path. Pharmak., 247, 304.Google Scholar
Hornykiewicz, O. (1968). “Gegenwartiger Stand der biochemisch pharmakologischen Erforschung des extrapyramidalmotorischen Systems.” Pharmakopsychiat., 1, 6.CrossRefGoogle Scholar
Häggendal, J., and Malmfors, T. (1965). “Identification and cellular localization of the catecholamines in the retina and the choroid of the rabbit.” Acta physiol. Scand., 64, 5866.Google Scholar
Kallmann, F. J., Aschner, B. M., and Falck, A. (1956). Comparative Data on Longevity, Adjustment to Ageing and Causes of Death in a Senescent Twin Population (Ed. Gedda, L.). Rome: Novant'anni delle leggi Mendeliane.Google Scholar
Larsson, T., Sjögren, T., and Jakobsen, G. (1963). “Senile dementia. A clinical sociomedical and genetic study.” Acta psych. Scand., Suppl. 167.Google Scholar
Scheel-Krüger, J., and Randrup, A. (1967). “Stereotype hyperactive behaviour produced by dopamine in the absence of noradrenaline.” Life Sci., 6, 13891398.Google Scholar
Seiden, L. S., and Hansson, C. F. (1964). “Reversal of the reserpine-induced suppression of the conditioned avoidance response in the cat by L-DOPA.” Psychopharmacol., 6, 239244.Google Scholar
Siegel, S. (1956). Nonparametric Statistics for the Behavioral Sciences. New York: McGraw-Hill Book Co.Google Scholar
Sjögren, H., and Sourander, P. (1961). “Histopathological studies in Alzheimer's disease.” IV Intern. Kongr. für Neuro-pathologie, III, IV, 319324.Google Scholar
Sjögren, T., Sjögren, H., and Lindgren, A. G. H. (1952). “Morbus Alzheimer and Morbus Pick. A genetic, clinical, and patho-anatomical study.” Acta psych. neurol. Scand., Suppl. 82.Google Scholar
Weil-Malherbe, H. (1955). “The concentration of adrenaline in human plasma and its relation to mental activity.” J. ment. Sci., 101, 733755.CrossRefGoogle Scholar
Submit a response

eLetters

No eLetters have been published for this article.