Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-11T01:58:50.829Z Has data issue: false hasContentIssue false

Cerebral Pharmacodynamics of Physostigmine in Alzheimer's Disease Investigated Using Single-Photon Computerised Tomography

Published online by Cambridge University Press:  02 January 2018

R. Hunter*
Affiliation:
MRC Brain Metabolism Unit, Royal Edinburgh Hospital, Morningside Park, Edinburgh EH8 9JZ
D. J. Wyper
Affiliation:
Wellcome Neuroscience Group, Department of Clinical Physics, Institute of Neurological Sciences, Southern General Hospital, Glasgow G51 4TF
J. Patterson
Affiliation:
Wellcome Neuroscience Group, Department of Clinical Physics, Institute of Neurological Sciences, Southern General Hospital, Glasgow G51 4TF
M. T. Hansen
Affiliation:
Wellcome Neuroscience Group, Department of Clinical Physics, Institute of Neurological Sciences, Southern General Hospital, Glasgow G51 4TF
G. M. Goodwin
Affiliation:
MRC Metabolism Unit, Royal Edinburgh Hospital
*
Consultant Psychiatrist, Department of Psychological Medicine, Gartnavel Royal Hospital, Glasgow G12 0XH

Abstract

The effects of physostigmine on patterns of rCBF in patients with pre-senile Alzheimer's disease were studied using 99mTc-labelled HMPAO SPECT. Regional CBF increased in the left cortex relative to right, with the most significant effect in left frontal and higher frontal regions. Measures of regional brain function, such as SPECT, are an important complement to psychological test batteries in understanding the effects in brain of putative antidementia drugs. SPECT brain imaging could extend our understanding of the action of psychotropic drugs in other major psychiatric illnesses.

Type
Research Article
Copyright
Copyright © Royal College of Psychiatrists, 1991 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amaducci, L. Sorbi, S. Albanese, A. et al (1981) Choline acetyltransferase (ChAT) activity differs in right and left human temporal lobes. Neurology, 31, 799805.Google Scholar
Becker, J. T. Huff, F. J. Nebes, R. D. et al (1988) Neuropsychological function of Alzheimer's disease: patterns of impairment and rates of progression. Archives of Neurology, 45, 263268.Google Scholar
Bowen, D. M. Allen, S. J. Benton, J. S. et al (1983) Biochemical assessment of serotonergic and cholinergic dysfunction and cerebral atrophy in Alzheimer's disease. Journal of Neurochemistry, 41, 266272.Google Scholar
Byrne, J. & Arie, T. (1989) Tetrahydroaminoacridine (THA) in Alzheimer's disease. British Medical Journal, 298, 845846.CrossRefGoogle ScholarPubMed
Christie, J. E. Shering, A. Ferguson, J. et al (1981) Physostigmine and arecholine: effects of intravenous infusions in Alzheimer presenile dementia. British Journal of Psychiatry, 138, 4650.CrossRefGoogle ScholarPubMed
Dam, M. & London, E. D. (1983) Effects of cholinomimetics on glucose utilization in rat brain optic systems. European Journal of Pharmacology, 87, 137140.Google Scholar
Davies, P. (1979) Neurotransmitter-related enzymes in senile dementia of Alzheimer type. Brain Research, 171, 319327.Google Scholar
Davies, P. & Maloney, A. F. J. (1976) Selective loss of central cholinergic neurones in Alzheimer's disease. Lancet, ii, 1403.Google Scholar
Davies, P. & Verth, A. H. (1978) Regional distribution of muscarinic acetylcholine receptor in normal and Alzheimer's-type dementia brains. Brain Research, 138, 385392.Google Scholar
Davis, K. L. & Mohs, R. C. (1982) Enhancement of memory process in Alzheimer's disease with multiple dose intravenous physostigmine. American Journal of Psychiatry, 139, 14211424.Google ScholarPubMed
Davis, S. M. Acherman, R. H. Correra, J. A. et al (1983) Cerebral blood flow and cerebral vascular CO2 reactivity in stroke-age normal controls. Neurology, 33, 391399.Google Scholar
Folstein, M. F. Folstein, S. E. & McHugh, P. R. (1975) A practical method for grading the cognitive state of patients for the children. Journal of Psychiatric Research, 12, 189198.Google Scholar
Fox, P. T. Raichle, M. E. Mintun, M. A. et al (1988) Non oxidative glucose consumption during focal physiologic neural activity. Science, 241, 462464.CrossRefGoogle ScholarPubMed
Frackowiak, R. S. J. Pozzilli, C. Legg, N. J. et al (1981) Regional cerebral oxygen supply and utilization in dementia. A clinical and physiological study with oxygen-15 and positron tomography. Brain, 104, 753778.Google Scholar
Friedland, R. R. & Meibach, R. C. (1981) Effects of acetylcholinesterase inhibitors on 2-deoxy-D-glucose uptake in the rat brain. Society of Neuroscience Abstracts, 7, 494.Google Scholar
Friedland, R. P. Budinger, T. F. Koss, E. et al (1985) Alzheimer's disease: anterior-posterior and lateral hemispheric alterations in cortical glucose utilization. Neuroscience Letters, 53, 235240.Google Scholar
Gustafson, L. Edvinsson, L. Dahlgren, N. et al (1987) Intravenous physostigmine treatment of Alzheimer's disease evaluated by psychometric testing, regional cerebral blood flow (rCBF) measurement, and EEG. Psychopharmacology, 93, 3135.Google Scholar
Haxby, J. V. Duara, R. Grady, C. L. et al (1985) Relations between neuropsychological and cerebral metabolic asymmetries in early Alzheimer's disease. Journal of Cerebral Blood Flow and Metabolism, 5, 193200.Google Scholar
Haxby, J. V. Grady, C. L. Duara, R. et al (1986) Neurocortical metabolic abnormalities precede nonmemory cognitive defects in early Alzheimer's-type dementia. Archives of Neurology, 43, 882883.CrossRefGoogle Scholar
Hoffman, W. E. Albrecht, R. F. Miletich, D. J. et al (1986) Cerebrovascular and cerebral metabolic effects of physostigmine, midazolam, and a benzodiazepine antagonist. Anaesthesia and Analgesia, 65, 639644.CrossRefGoogle Scholar
Huff, F. J. Becker, J. T. Belle, S. H. et al (1987) Cognitive deficits and clinical diagnosis of Alzheimer's disease. Neurology, 37, 11191124.CrossRefGoogle ScholarPubMed
Hunter, R. McLuskie, R. Wyper, D. et al (1989) The pattern of function-related regional cerebral blood flow investigated by single photon emission tomography with 99mTc-HMPAO in patients with presenile Alzheimer's disease and Korsakoff's psychosis. Psychological Medicine, 19, 847855.CrossRefGoogle ScholarPubMed
McKhann, G. Drachman, D. Folstein, M. et al (1984) Clinical diagnosis of Alzheimer's disease: report of the NINCDS–ADRDA work group. Neurology, 34, 939944.CrossRefGoogle ScholarPubMed
Moossy, J. Hanin, I. Martinez, A. J. et al (1985) Lateral variations in morphological and cholinergic markers in Alzheimer's disease and other dementias. Journal of Neuropathology and Experimental Neurology, 44, 329.Google Scholar
Moossy, J. Zubenko, G. S. Martinez, A. J. et al (1989) Lateralization of brain morphologic and cholinergic abnormalities in Alzheimer's disease. Archives of Neurology, 46, 639642.Google Scholar
Neirinckx, R. D. Canning, L. R. Piper, I. M. et al (1987) Technetium-99m d,1–HM-PAO: a new radiopharmaceutical for SPECT imaging of regional cerebral blood perfusion. Journal of Nuclear Medicine, 28, 191202.Google Scholar
Nelson, S. T. Doull, J. Tockman, B. A. et al (1978) Regional brain metabolism changes induced by acetylcholinesterase inhibitors. Brain Research, 157, 186192.CrossRefGoogle ScholarPubMed
Oldfield, R. (1971) The assessment and analysis of h andedness: the Edinburgh inventory. Neuropsychologia, 9, 97113.Google Scholar
Palacios, J. M. (1982) Autoradiographic localization of muscarinic cholinergic receptors in the hippocampus of patients with senile dementia. Brain Research, 243, 173175.CrossRefGoogle ScholarPubMed
Perry, E. K. (1986) The cholinergic hypothesis – ten years on. British Medical Bulletin, 42, 6369.Google Scholar
Richter, J. A. Perry, E. K. & Tomlinson, B. E. (1980) Acetylcholine and choline levels in post mortem brain tissue: preliminary observations in Alzheimer's disease. Life Science, 26, 16831689.Google Scholar
Rossor, M. N. Garrett, N. J. Johnson, A. L. et al (1982) A post-mortem study of the cholinergic and GABA systems in senile dementia. Brain, 105, 313330.CrossRefGoogle ScholarPubMed
Rossor, M. N. Iversen, L. L. Reynolds, G. P. et al (1984) Neurochemical characteristics of early and late onset types of Alzheimer disease. British Medical Journal, 288, 961964.CrossRefGoogle Scholar
Roth, M. Tym, E. Mountjoy, F. et al (1986) CAMDEX. A standardised instrument for the diagnosis of mental disorder in the elderly with special reference to the early detection of dementia. British Journal of Psychiatry, 149, 698709.Google Scholar
Saletu, B. Darragh, A. Salmon, P. et al (1989) EEG brain mapping in evaluating the time-course of the central action of DUP 9% – a new acetylcholine releasing drug. British Journal of Clinical Pharmacology, 28, 116.CrossRefGoogle Scholar
Scremin, O. U. Rovere, A. A. & Raynald, A. C. (1973) Cholinergic control of blood flow in the cerebral cortex of the rat. Stroke, 4, 232239.CrossRefGoogle ScholarPubMed
Sims, N. R. Bowen, D. M. Allen, S. J. et al (1983) Presynaptic cholinergic dysfunctions in patients with dementia. Journal of Neurochemistry, 40, 503509.Google Scholar
Sokoloff, L. (1959) The action of drugs on the cerebral circulation. Pharmacological Reviews, 11, 185.Google Scholar
Sokoloff, L. (1981) Localization of functional activity in the central nervous system by measurement of glucose utilization with radioactive deoxyglucose. Journal of Cerebral Blood Flow and Metabolism, 1, 736.Google Scholar
Stern, Y. Sano, M. & Mayeux, R. (1987) Effects of oral physostigmine in Alzheimer's disease. Annals of Neurology, 22, 306310.Google Scholar
Summers, W. K. Majorski, L. V. Marsh, G. M. et al (1986) Oral tetrahydroaminoacridine in long-term treatment of senile dementia. New England Journal of Medicine, 315, 12411245.Google Scholar
Tomlinson, B. E. & Corsellis, J. A. N. (1984) Ageing and the dementias. In Greenfield's Neuropathology (eds Hume Adams, J. Corsellis, J. A. N. & Duchen, L. W.), pp. 9511025. London: Edward Arnold.Google Scholar
Weinberger, D. R. Gibson, R. E. Coppola, R. et al (1989) Distribution of muscarinic receptors in patients with dementia: a controlled study of 123I-QNB and SPECT. Journal of Cerebral Blood Flow and Metabolism, 9 (suppl. 1), S537.Google Scholar
Wesnes, K. Simmons, D. Rook, M. et al (1987) A double-blind placebo controlled trial of Tanakan in the treatment of idiopathic cognitive impairment in the elderly. Human Psychopharmacology, 2, 159169.Google Scholar
Whalley, L. J. (1989) Drug treatments of dementia. British Journal of Psychiatry, 155, 595611.Google Scholar
Submit a response

eLetters

No eLetters have been published for this article.