Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-11T08:42:09.291Z Has data issue: false hasContentIssue false

Sur un invariant intégral du problème des n corps: Conséquence de l'homogénéité du potentiel

Published online by Cambridge University Press:  14 August 2015

L. Losco*
Affiliation:
Laboratoire de Mécanique Théorique, Université de Besançon, 25030 Besançon Cédex, France

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

An integral invariant is a generalization of first integrals to differential forms. Although this mathematical technique is more difficult, the integral invariants allow to obtain new properties for systems which have already well-known first integrals. Integral invariant of first order correspond to a ‘local first integral’ near any solution of motion. In this work I obtain an ‘11th local first integral’ for the gravitational n-body problem, or any homogeneous n-body problem as planetary systems. As this local first integral contains a secular term, a discussion of the stability is obtained. The integral invariant is used for the construction of very particular solutions (Levi Civita's or Poincaré's singular solutions). These solutions realize conditional maximum or minimum of the contraction of the system.

Type
Research Article
Copyright
Copyright © Reidel 1974 

References

Références

Cartan, E.: 1971, Leçons sur les invariants intégraux , Hermann, Paris.Google Scholar
Losco, L.: 1968, Bull. Astron. Sér. 3, III, Fasc. 4, 433–42.Google Scholar
Losco, L.: 1972, Solutions particulières et invariants intégraux , Thèse Besançon.Google Scholar
Losco, L.: 1973, C. R. Acad. Sci. Paris 277, Sér. A, 323–25.Google Scholar
Poincaré, H.: 1957, Les méthodes nouvelles de la mécanique céleste , Dover publications, New York.Google Scholar
Waldvogel, J.: 1972, Celes. Mech. 5, 37.CrossRefGoogle Scholar
Whittaker, E. T.: 1917, A Treatise on the Analytical Dynamics , University Press, Cambridge, U.K. Google Scholar
Wintner, A.: 1941, The Analytical Foundations of Celestial Mechanics , Princeton University Press, Princeton, N. J., U.S.A. Google Scholar