Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-12T04:30:05.790Z Has data issue: false hasContentIssue false

Cosmological Applications of Gravitational Lensing

Published online by Cambridge University Press:  25 May 2016

Peter Schneider*
Affiliation:
Max-Planck-Institut für Astrophysik, Postfach 1523, D-85740 Garching, Germany

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

It was recognized very early that the gravitational lens effect can be used as an efficient cosmological tool. Of the many researchers who foresaw the use of lensing, F. Zwicky and S. Refsdal should be explicitly mentioned. The perhaps most accurate predictions and foresights by these two authors are as follows: Zwicky estimated the probability that a distant object is multiply imaged to be about 1/400, and thus that the observation of this effect is “a certainty” [73] – his value, which was obtained by a very crude reasoning, is in fact very close to current estimates of the lensing probability of high-redshift QSOs. He predicted that the magnification caused by gravitational light deflection will allow a “deeper look” into the universe –in fact, the spectroscopy of very faint galaxies which are imaged into giant luminous arcs have yielded spectral information which would be very difficult to obtain without these ‘natural telescopes’. And third, Zwicky saw that gravitational lenses may be used to determine the mass of distant extragalactic objects[72] – in fact, the mass determination of clusters masses from giant luminous arcs is as least as accurate as other methods, but does not rely on special assumptions (like spherical symmetry, virial or thermal equilibrium) inherent in other methods, and the determination of the mass within the inner 0.9 arcseconds of the lensing galaxy in the quadruple QSO 2237+0305 to within 2% [52] is the most accurate extragalactic mass determination known. Refsdal predicted the use of gravitational lenses for determining cosmological parameters and for testing cosmological theories [48][49] – we shall return to these issues below.

Type
Part I: Invited Reviews
Copyright
Copyright © Kluwer 1996 

References

1. Bartelmann, M. (1994) A&A, submitted.Google Scholar
2. Bartelmann, M., Ehlers, J. & Schneider, P. (1993) A&A, 280, 351.Google Scholar
3. Bartelmann, M. & Schneider, P. (1993) A&A, 271, 421.Google Scholar
4. Bartelmann, M. & Schneider, P. (1993) A&A, 284, 1.Google Scholar
5. Bartelmann, M., Schneider, P. & Hasinger, G. (1994) A&A, in press.Google Scholar
6. Bartelmann, M., Steinmetz, M. & Weiss, A. (1994), A&A, submitted.Google Scholar
7. Bernstein, G.M., Tyson, J.A. & Kochanek, C.S. (1993) AJ, 105, 816.Google Scholar
8. Blandford, R.D. & Narayan, R. (1992) ARAA, 30, 311.CrossRefGoogle Scholar
9. Blandford, R.D., Saust, A.B., Brainerd, T.G. & Villumsen, J.V. (1991) MNRAS, 251, 600.Google Scholar
10. Burke, B.F. (1990), Lect. Notes in Physics, 360, 127.Google Scholar
11. Canizares, C.R. (1982), ApJ, 263, 508.Google Scholar
12. Carr, B.J. (1994), ARAA, in press.Google Scholar
13. Carroll, S.M., Press, W.H. & Turner, E.L. (1992) ARAA, 30, 499.Google Scholar
14. Cen, R., Gott, J.R., Ostriker, J.P. & Turner, E.L. (1994) ApJ, 423, 1.Google Scholar
15. Crampton, D., McClure, R.D. & Fletcher, J.M. (1992) ApJ, 392, 23.CrossRefGoogle Scholar
16. Dahle, H., Maddox, S.J. & Lilji, P.B. (1994), preprint.Google Scholar
17. Dalcanton, J.J. et al. (1994) ApJ, 424, 550.Google Scholar
18. Fahlman, G.G., Kaiser, N., Squires, G. & Woods, D. (1994) preprint.Google Scholar
19. Falco, E.E., Gorenstein, M.V. & Shapiro, I.I. (1991) ApJ, 372, 364.Google Scholar
20. Fort, B. & Mellier, Y. (1994) A&AR, 5, 239.Google Scholar
21. Fugmann, W. (1990) A&A, 240, 11.Google Scholar
22. Fukugita, M. & Peebles, P.J.E. (1994), preprint.Google Scholar
23. Kaiser, N. (1992) ApJ, 388, 272.Google Scholar
24. Kaiser, N. (1994) ApJ, submitted.Google Scholar
25. Kaiser, N. & Squires, G. (1993) ApJ, 404, 441.Google Scholar
26. Kassiola, A., Kovner, I. & Blandford, R.D. (1991) ApJ, 381, 6.Google Scholar
27. Kochanek, C.S. (1991) ApJ, 382, 58.Google Scholar
28. Kochanek, C.S. (1991) ApJ, 379, 517.CrossRefGoogle Scholar
29. Kochanek, C.S. (1992) ApJ, 384, 1.CrossRefGoogle Scholar
30. Kochanek, C.S. (1993) ApJ, 419, 12.Google Scholar
31. Kneib, J.-P., Mellier, Y., Fort, B. & Mathez, G. (1993) A&A, 273, 367.Google Scholar
32. Lawrence, C.R., Elston, R., Jannuzi, B.T. & Turner, E.L. (1994) preprint.Google Scholar
33. Lehár, J., Hewitt, J.N., Roberts, D.H. & Burke, B.F. (1992) ApJ, 384, 453.Google Scholar
34. Loeb, A. & Mao, S. (1994) preprint.Google Scholar
35. Loewenstein, M. (1994) ApJ, 431, 91.CrossRefGoogle Scholar
36. Mao, S. & Kochanek, C.S. (1994) MNRAS, 268, 569.Google Scholar
37. Maoz, D. et al. (1993) ApJ, 409, 28.Google Scholar
38. Maoz, D. & Rix, H.-W. (1993), ApJ, 416, 425.Google Scholar
39. Mellier, Y., Fort, B. & Kneib, J.-P. (1993) ApJ, 407, 33.Google Scholar
40. Miralda-Escudé, J. & Babul, A. (1994) preprint.Google Scholar
41. Mould, J. et al. (1994) preprint.Google Scholar
42. Narayan, R. & White, S.D.M. (1988) MNRAS, 231, 97p.CrossRefGoogle Scholar
43. Patnaik, A.R. et al. (1993), MNRAS, 261, 435.Google Scholar
44. Patnaik, A.R. (1994), in [65], p.311.Google Scholar
45. Pelt, J. et al. (1994) A&A 286, 775.Google Scholar
46. Press, W.H. & Gunn, J.E. (1973) ApJ 185, 397.Google Scholar
47. Press, W.H., Rybicki, G.B. & Hewitt, J.N. (1992) ApJ, 385, 404 & 416.Google Scholar
48. Refsdal, S. (1964) MNRAS, 128, 307.Google Scholar
49. Refsdal, S. (1966) MNRAS, 132, 101.Google Scholar
50. Refsdal, S. & Surdej, J. (1994), Rep. Prog. Phys., 56, 117.CrossRefGoogle Scholar
51. Richstone, D., Loeb, A. & Turner, E.L. (1993) ApJ, 393, 477.Google Scholar
52. Rix, H.-W., Schneider, D.P. & Bahcall, J.N. (1992) AJ 104, 959.Google Scholar
53. Rix, H.-W., Maoz, D., Turner, E.L. & Fukugita, M. (1994), ApJ, in press.Google Scholar
54. Rodrigues-Williams, L.L. & Hogan, C.J. (1994), AJ, 107, 451.Google Scholar
55. Schild, R. (1990) AJ, 100, 1771.Google Scholar
56. Schneider, P. (1993) A&A, 279, 1.Google Scholar
57. Schneider, P. (1994) A&A, submitted.Google Scholar
58. Schneider, P., Ehlers, J. & Falco, E.E. (1992) Gravitational Lenses, Springer, New York.Google Scholar
59. Schneider, P. & Seitz, C. (1994) A&A, in press.Google Scholar
60. Seitz, C. & Schneider, P. (1994) A&A, submitted.Google Scholar
61. Seitz, S. & Schneider, P. (1994) A&A, submitted.Google Scholar
62. Smail, I., Ellis, R.S., Fitchett, M.J. & Edge, A.C. (1994) preprint.Google Scholar
63. Smette, A. (1994), in [65], p.147.Google Scholar
64. Surdej, J. et al. (1993) AJ, 105, 2064.Google Scholar
65. Surdej, J. et al. (1994) Gravitational Lenses in the Universe, Liège.Google Scholar
66. Tyson, J.A., Valdes, F. & Wenk, R.A. (1990) ApJ, 349, L1.Google Scholar
67. Vanderriest, C. et al. (1989) A&A, 215, 1.Google Scholar
68. Walsh, D., Carswell, R.F. & Weymann, R.J. (1979) Nature 279, 381.Google Scholar
69. Wambsganss, J., Cen, R., Ostriker, J.P. & Turner, E.L. (1994) Nature, submitted.Google Scholar
70. Wu, X.-P. & Hammer, F. (1993) MNRAS, 262, 187.Google Scholar
71. Yee, H.K.C., Filippenko, A.V. & Tang, D. (1993) AJ, 105, 7.Google Scholar
72. Zwicky, F. (1937a) Phys. Rev. 51, 290.Google Scholar
73. Zwicky, F. (1937b) Phys. Rev. 51, 679.Google Scholar